首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1991年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
2.

Background

Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced.

Results

The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN).

Conclusions

We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.  相似文献   
3.

Key message

We identified, fine mapped, and physically anchored a dominant spot blotch susceptibility gene Scs6 to a 125 kb genomic region containing the Mla locus on barley chromosome 1H.

Abstract

Spot blotch caused by Cochliobolus sativus is an important disease of barley, but the molecular mechanisms underlying resistance and susceptibility to the disease are not well understood. In this study, we identified and mapped a gene conferring susceptibility to spot blotch caused by the pathotype 2 isolate (ND90Pr) of C. sativus in barley cultivar Bowman. Genetic analysis of F1 and F2 progeny as well as F3 families from a cross between Bowman and ND 5883 indicated that a single dominant gene (designated as Scs6) conferred spot blotch susceptibility in Bowman. Using a doubled haploid (DH) population derived from a cross between Calicuchima-sib (resistant) and Bowman-BC (susceptible), we confirmed that Scs6, contributed by Bowman-BC, was localized at the same locus as the previously identified spot blotch resistance allele Rcs6, which was contributed by Calicuchima-sib and mapped on the short arm of chromosome 1H. Using a genome-wide putative linear gene index of barley (Genome Zipper), 13 cleaved amplified polymorphism markers were developed from 11 flcDNA and two EST sequences and mapped to the Scs6/Rcs6 region on a linkage map constructed with the DH population. Further fine mapping with markers developed from barley genome sequences and F2 recombinants derived from Bowman?×?ND 5883 and Bowman?×?ND B112 crosses delimited Scs6 in a 125 kb genomic interval harboring the Mla locus on the reference genome of barley cv. Morex. This study provides a foundational step for further cloning of Scs6 using a map-based approach.
  相似文献   
4.
Approaches utilizing microlinearity between related species allow for the identification of syntenous regions and orthologous genes. Within the barley Chromosome 7H(1) is a region of high recombination flanked by molecular markers cMWG703 and MWG836. We present the constructed physical contigs linked to molecular markers across this region using bacterial artificial chromosomes (BAC) from the cultivar Morex. Barley expressed sequence tags (EST), identified by homology to rice chromosome 6 between the rice molecular markers C425A and S1434, corresponded to the barley syntenous region of Chromosome 7H(1) Bins 2–5 between molecular markers cMWG703-MWG836. Two hundred and thirteen ESTs were genetically mapped yielding 267 loci of which 101 were within the target high recombination region while 166 loci mapped elsewhere. The 101 loci were joined by 43 other genetic markers resulting in a highly saturated genetic map. In order to develop a physical map of the region, ESTs and all other molecular markers were used to identify Morex BAC clones. Seventy-four BAC contigs were formed containing 2–102 clones each with an average of 19 and a median of 13 BAC clones per contig. Comparison of the BAC contigs, generated here, with the Barley Physical Mapping Database contigs, resulted in additional overlaps and a reduction of the contig number to 56. Within cMWG703-MWG836 are 24 agriculturally important traits including the seedling spot blotch resistance locus, Rcs5. Genetic and physical analysis of this region and comparison to rice indicated an inversion distal of the Rcs5 locus. Three BAC clone contigs spanning the Rcs5 locus were identified. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
5.
Barley homolog of the Arabidopsis necrotic (disease lesion mimic) mutant HLM1 that encodes the cyclic nucleotide-gated ion channel 4 was cloned. Barley gene was mapped genetically to the known necrotic locus nec1 and subsequent sequence analysis identified mutations in five available nec1 alleles confirming barley homolog of Arabidopsis HLM1 as the NEC1 gene. Two fast neutron (FN) induced mutants had extensive deletions in the gene, while two previously described nec1 alleles had either a STOP codon in exon 1 or a MITE insertion in intron 2 which caused alternative splicing, frame shift and production of a predicted non-functional protein. The MITE insertion was consistent with the reported spontaneous origin of the nec1 Parkland allele. The third FN mutant had a point mutation in the coding sequence which resulted in an amino acid change in the conserved predicted cyclic nucleotide-gated ion channel pore region. The expression of two pathogenesis-related genes, HvPR-1a and β-1,3-glucanase, was elevated in two FN necrotic lines. Ten other members of the barley cyclic nucleotide-gated ion channel gene family were identified and their position on barley linkage map is reported. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
6.
The dominant gene Rdg2a of barley conferring resistance to the hemi-biotrophic seed-borne pathogen Pyrenophora graminea is located in the distal region of chromosome arm 1 (7H)S. As the first step towards isolating the gene, a high-resolution genetic map of the region was constructed using an F2 population of 1,400 plants (ThibautRdg2a×Mirco). The map included six classes of resistance gene analogues (RGAs) tightly associated with Rdg2a. Rdg2a was delimited to a genetic interval of 0.14 cM between the RGAs ssCH4 and MWG851. Additional markers were generated using the sequence from the corresponding region on rice chromosome 6, allowing delimitation of the Rdg2a syntenic interval in rice to a 115 kbp stretch of sequence. Analysis of the rice sequence failed to reveal any genes with similarity to characterized resistance genes. Therefore, either the rice-barley synteny is disrupted in this region, or Rdg2a encodes a novel type of resistance protein.Communicated by P. Langridge  相似文献   
7.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley (Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.  相似文献   
8.
Disease lesion mimic mutants (DLMMs) are characterized by the spontaneous development of necrotic spots with various phenotypes designated as necrotic (nec) mutants in barley. The nec mutants were traditionally considered to have aberrant regulation of programmed cell death (PCD) pathways, which have roles in plant immunity and development. Most barley nec3 mutants express cream to orange necrotic lesions contrasting them from typical spontaneous DLMMs that develop dark pigmented lesions indicative of serotonin/phenolics deposition. Barley nec3 mutants grown under sterile conditions did not exhibit necrotic phenotypes until inoculated with adapted pathogens, suggesting that they are not typical DLMMs. The F2 progeny of a cross between nec3-γ1 and variety Quest segregated as a single recessive susceptibility gene post-inoculation with Bipolaris sorokiniana, the causal agent of the disease spot blotch. Nec3 was genetically delimited to 0.14 cM representing 16.5 megabases of physical sequence containing 149 annotated high confidence genes. RNAseq and comparative analysis of the wild type and five independent nec3 mutants identified a single candidate cytochrome P450 gene (HORVU.MOREX.r2.6HG0460850) that was validated as nec3 by independent mutations that result in predicted nonfunctional proteins. Histology studies determined that nec3 mutants had an unstable cutin layer that disrupted normal Bipolaris sorokiniana germ tube development.  相似文献   
9.
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.  相似文献   
10.
Rpg1 is a stem rust resistance gene that has protected barley from severe losses for over 60 years in the US and Canada. It confers resistance to many, but not all, pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici. A fast neutron induced deletion mutant, showing susceptibility to stem rust pathotype Pgt-MCC, was identified in barley cv. Morex, which carries Rpg1. Genetic and Rpg1 mRNA and protein expression level analyses showed that the mutation was a suppressor of Rpg1 and was designated Rpr1 (Required for P. graminis resistance). Genome-wide expression profiling, using the Affymetrix Barley1 GeneChip containing ∼22,840 probe sets, was conducted with Morex and the rpr1 mutant. Of the genes represented on the Barley1 microarray, 20 were up-regulated and 33 were down-regulated by greater than twofold in the mutant, while the Rpg1 mRNA level remained constant. Among the highly down-regulated genes (greater than fourfold), genomic PCR, RT-PCR and Southern analyses identified that three genes (Contig4901_s_at, HU03D17U_s_at, and Contig7061_s_at), were deleted in the rpr1 mutant. These three genes mapped to chromosome 4(4H) bin 5 and co-segregated with the rpr1-mediated susceptible phenotype. The loss of resistance was presumed to be due to a mutation in one or more of these genes. However, the possibility exists that there are other genes within the deletions, which are not represented on the Barley1 GeneChip. The Rpr1 gene was not required for Rpg5- and rpg4-mediated stem rust resistance, indicating that it shows specificity to the Rpg1-mediated resistance pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号