首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有12条查询结果,搜索用时 234 毫秒
1.
OBJECTIVE: To describe a cytomorphologic criterion that may help improve diagnostic safety in morphologic differentiation of non-Hodgkin's lymphoma (NHL) from carcinoma or sarcoma and investigate the significance of this cytomorphologic phenomenon. STUDY DESIGN: Eighty-two smears of NHL, carcinoma and sarcoma smears were examined. Forty-five smears were from patients with carcinoma and 35 from patients with NHL. The remaining 2 smears were from patients with sarcoma. RESULTS: In 40 of 46 smears of carcinoma or sarcoma the nuclear membrane was assessed as "open" by the observer. In 6 smears the membrane was assessed as "closed. " In 30 of 35 smears with histologically confirmed NHL, the membrane was estimated as being closed. In the remaining 5 smears it was assessed as open. The sensitivity of evaluating the parameter as open or closed membrane was 87% and the specificity was 86%. The negative predictive value was 89%, and the positive predictive value was 83%. CONCLUSION: We suggest that the presence of an open or closed nuclear membrane may be helpful in differentiation of malignant lymphoma from carcinoma or sarcoma and may help improve diagnostic safety in daily practice.  相似文献   
2.
OBJECTIVE: To determine the usefulness of fine needle aspiration cytology (FNAC) in combination with flow cytometry on the new World Health Organization (WHO) classification of malignant lymphoma. STUDY DESIGN: Smears and flow cytometry reports of patients who underwent both methods at the same time were independently examined. Both methods were classified according to the new WHO classification of malignant lymphoma. RESULTS: A group of 131 smears were examined. In 89 cases exact diagnosis was made by cytomorphology. Twenty-five cases were not classified exactly or were classified incorrectly, resulting in a sensitivity of 96.4% and a specificity of 85%. With flow cytometry, only 30 of 131 patients could be classified exactly, resulting in a sensitivity of 27% and specificity of 100%, respectively. The combination of methods showed a sensitivity of 85% and specificity of 100%. CONCLUSION: The combination of FNAC and flow cytometry obtained by FNAC can distinguish between benign and malignant lymphoid infiltrates and support a diagnosis of lymphoma.  相似文献   
3.
It is shown that step-scan Fourier transform infrared spectroscopy can be applied to resolve the QA QB QAQB transition in Rhodobacter sphaeroides reaction centres with a 5 µs time resolution. In the mid-infrared region (1900 – 1200 cm–1), transient signals previously assigned to QA/B and QA/B vibrations, respectively (Brudler et al. 1994; Brudler et al. 1995; Breton and Nabedryk 1996), can be resolved with this new technique. In addition, the three small positive bands in the spectral region of the carboxylic C=O stretching modes of acidic amino acid side chains are also resolved at 1730, 1719 and 1704 cm–1. A global fit analysis yields two exponentials with half-times of 150 µs and 1.2 ms in agreement with IR spectroscopic studies at single wavenumbers (Hienerwadel et al. 1995), in the UV/VIS and near IR (Tiede et al. 1996, Li et al. 1996). The establishement of the step-scan technique enables a new approach to elucidate the molecular mechanism of this transition.  相似文献   
4.
Using 1-, 2-, 3- and 4-13C site-specifically labelled ubiquinone-10, reconstituted at the QA site of Rhodobacter sphaeroides R26 reaction centres, the infra-red bands dominated by the 1- and 4-C = O vibration of QA are assigned in the QA(-)-QA difference spectra. The mode dominated by the 4-C = O vibration is drastically downshifted in the reaction centres as compared with its absorption frequency in free ubiquinone-10. In contrast, the mode dominated by the 1-C = O vibration absorbs at similar frequencies in the free and the bound forms. The frequency shift of the 4-C = O vibration is due to a large decrease in bond order and indicates a strong interaction with the protein microenvironment in the ground state. In the charge-separated state the mode dominated by the semiquinone 4-C = O vibration is characteristic of strong hydrogen bonding to the microenvironment, whereas the mode dominated by the 1-C = O vibration indicates a weaker interaction. The asymmetric binding of the 1- and 4-C = O groups to the protein might contribute to the factors governing different redox reactions of ubiquinone-10 at the QA site as compared with its reactions at the QB site.  相似文献   
5.
To understand how proteins translate the energy of sunlight into defined conformational changes, we have measured the photocycle reactions of photoactive yellow protein (PYP) using time-resolved step scan Fourier transform infrared (FTIR) spectroscopy. Global fit analysis yielded the same apparent time constants for the reactions of the chromophore, the protonation changes of protein side chains and the protein backbone motions, indicating that the light cycle reactions are synchronized. Changes in absorbance indicate that there are at least four intermediates (I1, I1', I2, I2'). In the intermediate I1, the dark-state hydrogen bond from Glu 46 to the aromatic ring of the p-hydroxycinnamoyl chromophore is preserved, implying that the chromophore undergoes trans to cis isomerization by flipping, not the aromatic ring, but the thioester linkage with the protein. This excludes an I1 structural model proposed on the basis of time resolved Laue crystallography, but does agree with the cryotrapped structure of an I1 precursor.  相似文献   
6.
Photoactive yellow protein (PYP) is a blue light sensor present in the purple photosynthetic bacterium Ectothiorhodospira halophila, which undergoes a cyclic series of absorbance changes upon illumination at its lambda(max) of 446 nm. The anionic p-hydroxycinnamoyl chromophore of PYP is covalently bound as a thiol ester to Cys69, buried in a hydrophobic pocket, and hydrogen-bonded via its phenolate oxygen to Glu46 and Tyr42. The chromophore becomes protonated in the photobleached state (I(2)) after it undergoes trans-cis isomerization, which results in breaking of the H-bond between Glu46 and the chromophore and partial exposure of the phenolic ring to the solvent. In previous mutagenesis studies of a Glu46Gln mutant, we have shown that a key factor in controlling the color and photocycle kinetics of PYP is this H-bonding system. To further investigate this, we have now characterized Glu46Asp and Glu46Ala mutants. The ground-state absorption spectrum of the Glu46Asp mutant shows a pH-dependent equilibrium (pK = 8.6) between two species: a protonated (acidic) form (lambda(max) = 345 nm), and a slightly blue-shifted deprotonated (basic) form (lambda(max) = 444 nm). Both of these species are photoactive. A similar transition was also observed for the Glu46Ala mutant (pK = 7.9), resulting in two photoactive red-shifted forms: a basic species (lambda(max) = 465 nm) and a protonated species (lambda(max) = 365 nm). We attribute these spectral transitions to protonation/deprotonation of the phenolate oxygen of the chromophore. This is demonstrated by FT Raman spectra. Dark recovery kinetics (return to the unphotolyzed state) were found to vary appreciably between these various photoactive species. These spectral and kinetic properties indicate that the hydrogen bond between Glu46 and the chromophore hydroxyl group is a dominant factor in controlling the pK values of the chromophore and the glutamate carboxyl.  相似文献   
7.
To understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal, we are characterizing photoactive yellow protein (PYP), a water-soluble, 14 kDa blue-light receptor which undergoes a photocycle upon illumination. The active site residues glutamic acid 46, arginine 52, tyrosine 42, and threonine 50 form a hydrogen bond network with the anionic p-hydroxycinnamoyl cysteine 69 chromophore in the PYP ground state, suggesting an essential role for these residues for the maintenance of the chromophore's negative charge, the photocycle kinetics, the signaling mechanism, and the protein stability. Here, we describe the role of T50 and Y42 by use of site-specific mutants. T50 and Y42 are involved in fine-tuning the chromophore's absorption maximum. The high-resolution X-ray structures show that the hydrogen-bonding interactions between the protein and the chromophore are weakened in the mutants, leading to increased electron density on the chromophore's aromatic ring and consequently to a red shift of its absorption maximum from 446 nm to 457 and 458 nm in the mutants T50V and Y42F, respectively. Both mutants have slightly perturbed photocycle kinetics and, similar to the R52A mutant, are bleached more rapidly and recover more slowly than the wild type. The effect of pH on the kinetics is similar to wild-type PYP, suggesting that T50 and Y42 are not directly involved in any protonation or deprotonation events that control the speed of the light cycle. The unfolding energies, 26.8 and 25.1 kJ/mol for T50V and Y42F, respectively, are decreased when compared to that of the wild type (29.7 kJ/mol). In the mutant Y42F, the reduced protein stability gives rise to a second PYP population with an altered chromophore conformation as shown by UV/visible and FT Raman spectroscopy. The second chromophore conformation gives rise to a shoulder at 391 nm in the UV/visible absorption spectrum and indicates that the hydrogen bond between Y42 and the chromophore is crucial for the stabilization of the native chromophore and protein conformation. The two conformations in the Y42F mutant can be interconverted by chaotropic and kosmotropic agents, respectively, according to the Hofmeister series. The FT Raman spectra and the acid titration curves suggest that the 391 nm form of the chromophore is not fully protonated. The fluorescence quantum yield of the mutant Y42F is 1.8% and is increased by an order of magnitude when compared to the wild type.  相似文献   
8.
9.
Biological sensors: More than one way to sense oxygen.   总被引:5,自引:0,他引:5  
Recently determined structures of the oxygen-sensing heme domain of the bacterial protein FixL have revealed a new binding environment and signal transduction mechanism for heme; they have also provided new insights into the diverse 'PAS' domain superfamily.  相似文献   
10.
Photoactive yellow protein (PYP) is a small bacterial photoreceptor that undergoes a light-activated reaction cycle. PYP is also the prototypical Per-Arnt-Sim (PAS) domain. PAS domains, found in diverse multi-domain proteins from bacteria to humans, mediate protein-protein interactions and function as sensors and signal transducers. Here, we investigate conformational and dynamic changes in solution in wild-type PYP upon formation of the long-lived putative signaling intermediate I2 with enhanced hydrogen/deuterium exchange mass spectrometry (DXMS). The DXMS results showed that the central beta-sheet remains stable but specific external protein segments become strongly deprotected. Light-induced disruption of the dark-state hydrogen bonding network in I2 produces increased flexibility and opening of PAS core helices alpha3 and alpha4, releases the beta4-beta5 hairpin, and propagates conformational changes to the central beta-sheet. Surprisingly, the first approximately 10 N-terminal residues, which are essential for fast dark-state recovery from I2, become more protected. By combining the DXMS results with our crystallographic structures, which reveal detailed changes near the chromophore but limited protein conformational change, we propose a mechanism for I2 state formation. This mechanism integrates the results from diverse biophysical studies of PYP, and links an allosteric T to R-state conformational transition to three pathways for signal propagation within the PYP fold. On the basis of the observed changes in PYP plus commonalities shared among PAS domain proteins, we further propose that PAS domains share this conformational mechanism, which explains the versatile signal transduction properties of the structurally conserved PYP/PAS module by framework-encoded allostery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号