首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2011年   4篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1–deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.  相似文献   
2.
When food was removed from young rats in the early morning, adipose tissue tumor necrosis factor (TNF)-alpha activity increased 50% and lipoprotein lipase (LPL) activity decreased 70% in 6 h. There was a strong negative correlation between the TNF-alpha and LPL activities. Exogenous TNF-alpha further decreased LPL activity. Pentoxifylline, known to decrease production of TNF-alpha, had no effect on LPL activity in fed rats but almost abolished the rise of TNF-alpha and the decrease of LPL activity in rats deprived of food. The specific activity of LPL decreased from 0.92 mU/ng in fed rats to 0.35 and 0.24 mU/ng in rats deprived of food given saline or TNF-alpha, indicating a shift in the LPL molecules toward an inactive state. Lipopolysaccharide increased adipose tissue TNF-alpha and decreased LPL activity. Both of these effects were strongly impeded by pretreatment of the rats with pentoxifylline, or dexamethasone. Pretreatment of the rats with actinomycin D virtually abolished the response of LPL activity to food deprivation or exogenous TNF-alpha. We conclude that food deprivation, like lipopolysaccharide, signals via TNF-alpha to a gene whose product causes a rapid shift of newly synthesized LPL molecules toward an inactive form and thereby shuts down extraction of lipoprotein triglycerides by the adipose tissue.  相似文献   
3.
Rapid and efficient phagocytic removal of dying cells is a key feature of apoptosis. In necrotic caspase-independent modes of death, the role and extent of phagocytosis is not well documented. To address this issue, we studied at the ultrastructural level the phagocytic response to dying cells in an in vitro phagocytosis assay with a mouse macrophage cell line (Mf4/4). As target cells, murine L929sAhFas cells were induced to die by TNFR1-mediated necrosis or by Fas-mediated apoptosis. Apoptotic L929sAhFas cells are taken up by complete engulfment of apoptotic bodies as single entities forming a tight-fitting phagosome, thus resembling the "zipper"-like mechanism of internalization. In contrast, primary and secondary necrotic cells were internalized by a macropinocytotic mechanism with formation of multiple ruffles by the ingesting macrophage. Ingestion of necrotic cellular material was invariably taking place after the integrity of the cell membrane was lost and did not occur as discrete particles, in contrast to apoptotic material that is surrounded by an intact membrane. Although nuclei of necrotic cells have been observed in the vicinity of macrophages, no uptake of necrotic nuclei was observed. The present report provides a basis for future studies aimed at discovering molecular pathways that precede these diverse mechanisms of uptake.  相似文献   
4.
Tumor necrosis factor (TNF) is an essential mediator in the pathogenesis of Gram-negative septic shock. Injection of TNF into normal mice leads to systemic, lethal inflammation, which is indistinguishable from lipopolysaccharide (LPS)-induced lethal inflammation. alpha(2)-macroglobulin (A2M) is a major positive acute phase protein with broad-spectrum protease-inhibitory activity. Mouse A2M-deficient (MAM-/-) mice were significantly protected against lethal systemic inflammation induced by TNF. The protection is not due to faster clearance of the injected TNF. The induction of tolerance to TNF-induced lethality by repetitive administration of small doses of human TNF for five consecutive days was equally efficient in both mutant mice compared to wild-type mice. In D-(+)-galactosamine (GalN)-sensitized mice, TNF induces lethal inflammatory hepatitis. MAM(-/-) mice are equally sensitive to the lethal combination of TNF/GalN. Furthermore, interleukin-1-induced desensitization to TNF/GalN was not impaired in MAM(-/-) mice. We conclude that MAM plays a mediating role in TNF-induced lethal shock and that MAM deficiency does not reduce changes in efficiency of tolerance and desensitization to TNF and TNF/GalN-induced lethality, respectively.  相似文献   
5.
6.
Moyamoya is a cerebrovascular condition characterized by a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and the compensatory development of abnormal “moyamoya” vessels. The pathophysiological mechanisms of this condition, which leads to ischemic and hemorrhagic stroke, remain unknown. It can occur as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes). Here, we describe an autosomal-recessive disease leading to severe moyamoya and early-onset achalasia in three unrelated families. This syndrome is associated in all three families with homozygous mutations in GUCY1A3, which encodes the α1 subunit of soluble guanylate cyclase (sGC), the major receptor for nitric oxide (NO). Platelet analysis showed a complete loss of the soluble α1β1 guanylate cyclase and showed an unexpected stimulatory role of sGC within platelets. The NO-sGC-cGMP pathway is a major pathway controlling vascular smooth-muscle relaxation, vascular tone, and vascular remodeling. Our data suggest that alterations of this pathway might lead to an abnormal vascular-remodeling process in sensitive vascular areas such as ICA bifurcations. These data provide treatment options for affected individuals and strongly suggest that investigation of GUCY1A3 and other members of the NO-sGC-cGMP pathway is warranted in both isolated early-onset achalasia and nonsyndromic moyamoya.  相似文献   
7.
Using tumor cell-restricted overexpression of glutathione peroxidase 4 (GP x 4), we investigated the contribution of tumor cell eicosanoids to solid tumor growth and malignant progression in two tumor models differing in tumorigenic potential. By lowering cellular lipid hydroperoxide levels, GP x 4 inhibits cyclooxygenase (COX) and lipoxygenase (LOX) activities. GP x 4 overexpression drastically impeded solid tumor growth of weakly tumorigenic L929 fibrosarcoma cells, whereas B16BL6 melanoma solid tumor growth was unaffected. Yet, GP x 4 overexpression did markedly increase the sensitivity of B16BL6 tumors to angio-destructive TNF-alpha therapy and abolished the metastatic lung colonizing capacity of B16BL6 cells. Furthermore, the GP x 4-mediated suppression of tumor cell prostaglandin E(2) (PGE(2)) production impeded the induction of COX-2 expression by the tumor stress conditions hypoxia and inflammation. Thus, our results reflect a PGE(2)-driven positive feedback loop for COX-2 expression in tumor cells. This was further supported by the restoration of COX-2 induction capacity of GP x 4-overexpressing L929 tumor cells when cultured in the presence of exogenous PGE(2). Thus, although COX-2 expression and eicosanoid production may be enabled by PGE(2) from the tumor microenvironment, our results demonstrate the predominant tumor cell origin of protumoral eicosanoids, promoting solid tumor growth of weakly tumorigenic tumors and malignant progression of strongly tumorigenic tumors.  相似文献   
8.
Reperfusion injury limits the benefits of revascularization in the treatment of myocardial infarction (MI). Breathing nitric oxide (NO) reduces cardiac ischemia-reperfusion injury in animal models; however, the signaling pathways by which inhaled NO confers cardioprotection remain uncertain. The objective of this study was to learn whether inhaled NO reduces cardiac ischemia-reperfusion injury by activating the cGMP-generating enzyme, soluble guanylate cyclase (sGC), and to investigate whether bone marrow (BM)-derived cells participate in the sGC-mediated cardioprotective effects of inhaled NO. Wild-type (WT) mice and mice deficient in the sGC α(1)-subunit (sGCα(1)(-/-) mice) were subjected to cardiac ischemia for 1 h, followed by 24 h of reperfusion. During ischemia and for the first 10 min of reperfusion, mice were ventilated with oxygen or with oxygen supplemented with NO (80 parts per million). The ratio of MI size to area at risk (MI/AAR) did not differ in WT and sGCα(1)(-/-) mice that did not breathe NO. Breathing NO decreased MI/AAR in WT mice (41%, P = 0.002) but not in sGCα(1)(-/-) mice (7%, P = not significant). BM transplantation was performed to restore WT BM-derived cells to sGCα(1)(-/-) mice. Breathing NO decreased MI/AAR in sGCα(1)(-/-) mice carrying WT BM (39%, P = 0.031). In conclusion, these results demonstrate that a global deficiency of sGCα(1) does not alter the degree of cardiac ischemia-reperfusion injury in mice. The cardioprotective effects of inhaled NO require the presence of sGCα(1). Moreover, our studies suggest that BM-derived cells are key mediators of the ability of NO to reduce cardiac ischemia-reperfusion injury.  相似文献   
9.
Systemic inflammatory response syndromes (SIRS) may be caused by both infectious and sterile insults, such as trauma, ischemia-reperfusion or burns. They are characterized by early excessive inflammatory cytokine production and the endogenous release of several toxic and damaging molecules. These are necessary to fight and resolve the cause of SIRS, but often end up progressively damaging cells and tissues, leading to life-threatening multiple organ dysfunction syndrome (MODS). As inflammasome-dependent cytokines such as interleukin-1β are critically involved in the development of MODS and death in SIRS, and ATP is an essential activator of inflammasomes in vitro, we decided to analyze the ability of ATP removal to prevent excessive tissue damage and mortality in a murine LPS-induced inflammation model. Our results indeed indicate an important pro-inflammatory role for extracellular ATP. However, the effect of ATP is not restricted to inflammasome activation at all. Removing extracellular ATP with systemic apyrase treatment not only prevented IL-1β accumulation but also the production of inflammasome-independent cytokines such as TNF and IL-10. In addition, ATP removal also prevented systemic evidence of cellular disintegration, mitochondrial damage, apoptosis, intestinal barrier disruption and even mortality. Although blocking ATP receptors with the broad-spectrum P2 purinergic receptor antagonist suramin imitated certain beneficial effects of apyrase treatment, it could not prevent morbidity or mortality at all. We conclude that removal of systemic extracellular ATP could be a valuable strategy to dampen systemic inflammatory damage and toxicity in SIRS.  相似文献   
10.
The Yatapoxviruses encode a distinct class of secreted TNF-binding protein (TNF-BP) that resembles an MHC class I heavy chain but distinct from any other known TNF inhibitor. Characterization of these viral TNF inhibitors from Tanapox virus, Yaba monkey tumor virus (YMTV) and a closely related version from Swinepox virus revealed dramatically differential TNF binding specificities for different mammalian species. The Tanapox virus 2L protein (TPV-2L) formed inhibitory complexes with human TNF, and interacted with monkey and canine TNF with high affinity but rabbit TNF with low affinity. On the other hand, YMTV-2L bound human and monkey TNF with high affinity but rabbit TNF with only low affinity. The TNF-BP from swinepox virus (SPV003/148) only interacted with porcine TNF with high affinity. The observed TNF binding analysis mirrored the biological activity of these TNF-binding protein to block TNF-induced cellular cytolysis. TPV-2L and YMTV-2L also inhibited the human TNF-mediated signaling in cells but TPV-2L exhibited higher affinity for human TNF (KD, 43 pm) compared with monkey (KD, 120 pm) whereas for YMTV-2L, the affinities were reversed (human TNF KD, 440 pm; monkey TNF KD, 230 pm). The interaction domain of human TNF with TNF-binding proteins is significantly different from that of TNFRs, as determined using human TNF mutants. We conclude that these poxvirus TNF-binding proteins represent a new class of TNF inhibitors and are distinct from the viral TNF receptor homologues characterized to date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号