首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   8篇
  121篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   2篇
  2013年   7篇
  2012年   11篇
  2011年   2篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   8篇
  1999年   4篇
  1998年   8篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1972年   1篇
  1948年   1篇
排序方式: 共有121条查询结果,搜索用时 0 毫秒
1.
2.
3.
    
The development of a biopharmaceutical production process usually occurs sequentially, and tedious optimization of each individual unit operation is very time-consuming. Here, the conditions established as optimal for one-step serve as input for the following step. Yet, this strategy does not consider potential interactions between a priori distant process steps and therefore cannot guarantee for optimal overall process performance. To overcome these limitations, we established a smart approach to develop and utilize integrated process models using machine learning techniques and genetic algorithms. We evaluated the application of the data-driven models to explore potential efficiency increases and compared them to a conventional development approach for one of our development products. First, we developed a data-driven integrated process model using gradient boosting machines and Gaussian processes as machine learning techniques and a genetic algorithm as recommendation engine for two downstream unit operations, namely solubilization and refolding. Through projection of the results into our large-scale facility, we predicted a twofold increase in productivity. Second, we extended the model to a three-step model by including the capture chromatography. Here, depending on the selected baseline-process chosen for comparison, we obtained between 50% and 100% increase in productivity. These data show the successful application of machine learning techniques and optimization algorithms for downstream process development. Finally, our results highlight the importance of considering integrated process models for the whole process chain, including all unit operations.  相似文献   
4.
Conditional DNA excision between two LoxP sites can be achieved in the mouse using Cre-ER(T), a fusion protein between a mutated ligand binding domain of the human estrogen receptor (ER) and the Cre recombinase, the activity of which can be induced by 4-hydroxy-tamoxifen (OHT), but not natural ER ligands. We have recently characterized a new ligand-dependent recombinase, Cre-ER(T2), which was approximately 4-fold more efficiently induced by OHT than Cre-ER(T) in cultured cells. In order to compare the in vivo efficiency of these two ligand-inducible recombinases to generate temporally-controlled somatic mutations, we have engineered transgenic mice expressing a LoxP-flanked (floxed) transgene reporter and either Cre-ER(T) or Cre-ER(T2) under the control of the bovine keratin 5 promoter that is specifically active in the epidermis basal cell layer. No background recombinase activity could be detected, while recombination was induced in basal keratinocytes upon OHT administration. Interestingly, a dose-response study showed that Cre-ER(T2) was approximately 10-fold more sensitive to OHT induction than Cre-ER(T).  相似文献   
5.
Ser172 of β tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast β tubulin Tub2p. The two mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT) dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two β tubulin mutations exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division.  相似文献   
6.
    
Proteins destined for the peroxisomal matrix are synthesized in the cytosol, and imported post-translationally. It has been previously demonstrated that stably folded proteins are substrates for peroxisomal import. Mammalian peroxisomes do not contain endogenous chaperone molecules. Therefore, it is possible that proteins are required to fold into their stable, tertiary conformation in order to be imported into the peroxisome. These investigations were undertaken to determine whether proteins rendered incapable of folding were also substrates for import into peroxisomes. Reduction of albumin resulted in a less compact tertiary structure as measured by analytical centrifugation. Microinjection of unfolded albumin molecules bearing the PTS1 targeting signal resulted in their import into peroxisomes. Kinetic analysis indicated that native and unfolded molecules were imported into peroxisomes at comparable rates. While import was unaffected by treatment with cycloheximide, hsc70 molecules were observed to be imported along with the unfolded albumin molecules. These results indicate that proteins, which are incapable of assuming their native conformation, are substrates for peroxisomal import. When combined with previous observations demonstrating the import of stably folded proteins, these results support the model that tertiary structure has no effect on protein import into the peroxisomal matrix .  相似文献   
7.
The intracellular localization, and thereby the function, of a number of key regulator proteins tagged with a short leucine-rich motif (the nuclear export signal or NES) is controlled by CRM1/exportin1, which is involved in the export of these proteins from the nucleus [1]. A common characteristic of these regulators is their transient action in the nucleus during either a specific phase of the cell cycle or in response to specific signals [1]. Here, we show that a particular member of the class II histone-deacetylases mHDA2/mHDAC6 [2] belongs to this family of cellular regulators that are present predominantly in the cytoplasm, but are also capable of shuttling between the nucleus and the cytoplasm. A very potent NES present at the amino terminus of mHDAC6 was found to play an essential role in this shuttling process. The sub-cellular localization of mHDAC6 appeared to be controlled by specific signals, since the arrest of cell proliferation was found to be associated with the translocation of a fraction of the protein into the nucleus. Data presented here suggest that mHDAC6 might be the first member of a functionally distinct class of deacetylases, responsible for activities not shared by other known histone deacetylases.  相似文献   
8.
9.
    
We used ethylenediaminetetraacetic acid dianhydride (EDTAD) to modify oxalate decarboxylase (OXDC) to improve its adsorption on calcium oxalate stones. The modified sites were identified by Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and the adsorption mechanism of the EDTAD-modified OXDC on calcium oxalate (CaOx) was investigated. We investigated adsorption time, initial enzyme concentration, temperature and solution pH on the adsorption process. Data were analyzed using kinetics, thermodynamics and isotherm adsorption models. UPLC-MS showed that EDTAD was attached to OXDC covalently and suggested that the chemical modification occurred at both the free amino of the side chain and the α-NH2 of the peptide. The adsorption capacity of the EDTAD-OXDC on calcium oxalate was 53.37% greater than that of OXDC at the initial enzyme concentration of 5 mg/ml, pH = 7.0, at 37° C. The modified enzyme (EDTAD-OXDC) demonstrated improved oxalate degradation activity at pH 4.5?6.0. Kinetic data fitting analysis suggested a pseudo second order kinetic model. Estimates of the thermodynamic parameters including ΔG0, ΔH0 and ΔS0 of the adsorption process showed it to be feasible, spontaneous and endothermic. Isotherm data fitting analysis indicated that the adsorption process is reduced to monolayer adsorption at a low enzyme concentration and to multilayer adsorption at a high enzyme concentration. It may be possible to apply OXDC to degradation of calcium oxalate stones.  相似文献   
10.
    
The organization of eukaryotic cells into membrane-bound compartments must be faithfully sustained for survival of the cell. A subtle equilibrium exists between the degradation and the proliferation of organelles. Commonly, proliferation is initiated by a membrane remodeling process. Here, we dissect the function of proteins driving organelle proliferation in the particular case of peroxisomes. These organelles are formed either through a growth and division process from existing peroxisomes or de novo from the endoplasmic reticulum (ER). Among the proteins involved in the biogenesis of peroxisomes, peroxins, members of the Pex11 protein family participate in peroxisomal membrane alterations. In the yeast Saccharomyces cerevisiae, the Pex11 family consists of three proteins, Pex11p, Pex25p and Pex27p. Here we demonstrate that yeast mutants lacking peroxisomes require the presence of Pex25p to regenerate this organelle de novo. We also provide evidence showing that Pex27p inhibits peroxisomal function and illustrate that Pex25p initiates elongation of the peroxisomal membrane. Our data establish that although structurally conserved each of the three Pex11 protein family members plays a distinct role. While ScPex11p promotes the proliferation of peroxisomes already present in the cell, ScPex25p initiates remodeling at the peroxisomal membrane and ScPex27p acts to counter this activity. In addition, we reveal that ScPex25p acts in concert with Pex3p in the initiation of de novo peroxisome biogenesis from the ER.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号