首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   790篇
  免费   100篇
  国内免费   1篇
  2022年   12篇
  2021年   9篇
  2020年   10篇
  2019年   17篇
  2018年   10篇
  2017年   4篇
  2016年   13篇
  2015年   43篇
  2014年   35篇
  2013年   40篇
  2012年   44篇
  2011年   48篇
  2010年   21篇
  2009年   20篇
  2008年   42篇
  2007年   32篇
  2006年   31篇
  2005年   35篇
  2004年   45篇
  2003年   34篇
  2002年   25篇
  2001年   32篇
  2000年   27篇
  1999年   16篇
  1998年   13篇
  1997年   7篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   17篇
  1991年   17篇
  1990年   23篇
  1989年   16篇
  1988年   13篇
  1987年   19篇
  1986年   16篇
  1985年   9篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1975年   3篇
  1974年   5篇
  1973年   7篇
  1972年   4篇
  1869年   2篇
排序方式: 共有891条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor   总被引:6,自引:0,他引:6  
Diazepam binding inhibitor (DBI), a peptide located in CNS neurons, blocks the binding of benzodiazepines and beta-carbolines to the allosteric modulatory sites of gamma-aminobutyric acid (GABAA) receptors. Subcellular fractionation studies of rat brain indicate that DBI is compartmentalized. DBI-like immunoreactivity is highly enriched in synaptosomes obtained by differential centrifugation in isotonic sucrose followed by a Percoll gradient. In synaptosomal lysate, DBI-like immunoreactivity is primarily associated with synaptic vesicles partially purified by differential centrifugation and continuous sucrose gradient. Depolarization induced by high K+ levels (50 mM) or veratridine (50 microM) released DBI stored in neurons of superfused slices of hypothalamus, hippocampus, striatum, and cerebral cortex. The high K+ level-induced release is Ca2+ dependent, and the release induced by veratridine is blocked by 1.7 microM tetrodotoxin. Depolarization released GABA and Met5-enkephalin-Arg6-Phe7 together with DBI. DBI is also released by veratridine depolarization, in a tetrodotoxin-sensitive fashion, from primary cultures of cerebral cortical neurons, but not from cortical astrocytes. Depolarization fails to release DBI from slices of liver and other peripheral organs. These data support the view that DBI may be released as a putative neuromodulatory substance from rat brain neurons.  相似文献   
5.
Repeated observations are made on species and numbers of individuals in some islets. The changes after 14 years are reported for 11 islets. They include several extinctions and invasions. Great changes in numbers of individuals were found, especially for many of the annuals, in some of them as great as between 0–10 and over 10 000 individuals. The greatest constancy was found in a few dominant and subdominant perennials.Dedicated to Prof.K. H. Rechinger on the occasion of his 80th birthday.  相似文献   
6.
A possible interaction between Cd2+ and Ca2+ as a component in Cd2+-induced insulin release was investigated in beta cells isolated from obese hyperglycemic mice. The glucose stimulated Cd2+ uptake was dependent on the concentration of sugar. This uptake was sigmoidal with a Km for glucose of about 5 mM and was suppressed by both 50 microM of the voltage-activated Ca2+ channel blocker D-600 and 12 mM Mg2+. In the presence of 8 mM glucose 5 microM Cd2+ evoked a prompt and sustained stimulatory response, corresponding to about 3-fold of the insulin release obtained in the absence of the ion. Whereas 5 microM Cd2+ was without effect on the glucose-stimulated 45Ca efflux in the presence of extracellular Ca2+, 40 microM inhibited it. At a concentration of 5 microM, Cd2+ had no effect on the resting membrane potential or the depolarization evoked by either glucose or K+. In the absence of extracellular Ca2+ there was only a modest stimulation of 45Ca efflux by 5 microM Cd2+. Studies of the ambient free Ca2+ concentration maintained by permeabilized cells also indicate that 5 microM Cd2+ do not mobilize intracellularly bound Ca2+ to any great extent. On the contrary, at this concentration, Cd2+ even suppressed inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release. The present study suggests that Cd2+ stimulates insulin release by a direct mechanism which does not involve an increase in cytoplasmic free Ca2+ concentration.  相似文献   
7.
Pancreatic beta-cells isolated from obese-hyperglycaemic mice released intracellular Ca2+ in response to carbamoylcholine, an effect dependent on the presence of glucose. The effective Ca2+ concentration reached was sufficient to evoke a transient release of insulin. When the cells were deficient in Ca2+, the Ca2+ pool sensitive to carbamoylcholine stimulation was equivalent to that released by ionomycin. Unlike intact cells, cells permeabilized by high-voltage discharges failed to generate either inositol 1,4,5-triphosphate (InsP3) or to release Ca2+ after exposure to carbamoylcholine. However, the permeabilized cells released insulin sigmoidally in response to increasing concentrations of Ca2+. Also in the absence of functional mitochondria these cells exhibited a large ATP-dependent buffering of Ca2+, enabling the maintenance of an ambient Ca2+ concentration corresponding to about 150 nM even after several additional pulses of Ca2+. InsP3, maximally effective at 6 microM, promoted a rapid and pronounced release of Ca2+. The InsP3-sensitive Ca2+ pool was rapidly filled and lost its Ca2+ late after ATP depletion. The transient nature of the Ca2+ signal was not overcome by repetitive additions of InsP3. It was possible to restore the response to InsP3 after a delay of approx. 20 min, an effect which had less latency after the addition of Ca2+. These latter findings argue against degradation and/or desensitization as factors responsible for the transiency in InsP3 response. It is suggested that Ca2+ released by InsP3 is taken up by a part of the endoplasmic reticulum (ER) not sensitive to InsP3. On metabolism of InsP3, Ca2+ recycles to the InsP3-sensitive pool, implying that this pool indeed has a very high affinity for the ion. The presence of functional mitochondria did not interfere with the recycling process. The ER in pancreatic beta-cells is of major importance in buffering Ca2+, but InsP3 only modulates Ca2+ transport for a restricted period of time following immediately upon its formation. Thereafter the non-sensitive part of the ER takes over the continuous regulation of Ca2+ cycling.  相似文献   
8.
Fura-2 loaded pancreatic beta-cells, isolated from obese hyperglycemic mice, were studied with respect to cytoplasmic free Ca2+ concentration ([Ca2+]i), insulin release and efflux of indicator. In the absence of glucose there was a continuous efflux of fura-2, which was markedly increased by stimulation with a high concentration of the sugar. Probenecid both reduced basal efflux of fura-2 and prevented that promoted by glucose. There was no interference of the drug with glucose-induced either insulin release or rise in [Ca2+]i. When applying fura-2 in pancreatic beta-cells, the use of probenecid markedly improves the measurements of [Ca2+]i.  相似文献   
9.
The derivatisation of intact rat hepatocytes with monobromobimane resulted in rapid labelling of accessible protein thiols in several subcellular fractions. The derivatisation procedure did not cause acute cytotoxicity, nor did it alter the buoyant densities of the fractions or their gross protein compositions. Quantitation of the fluorescence irreversibly associated with the fractions demonstrated considerable intracellular heterogeneity in this pool of thiols. Values were highest in cytosol (ca. 90 nmol/mg protein), intermediate in microsomes (ca. 65 nmol/mg protein) and mitochondria (ca. 45 nmol/mg protein) and lowest in a crude fraction containing both nuclei and plasma membrane (ca. 35 nmol/mg protein). Similar values were obtained from microsomes and cytosol derivatised after fractionation but there were significant increases of ca. 100% in corresponding values from isolated mitochondria and the nuclear/plasma membrane fraction. These results are discussed in terms of the dynamic fluxes in monobromobimane protein thiols during fractionation and the applicability of this noninvasive method to studies of the mechanism(s) of toxicity of reactive xenobiotics and the role(s) of protein thiols in normal cellular function.  相似文献   
10.
Sows (N = 16) were infused intravenously for 8 h with saline or naloxone (200 mg/h) or their litters were transiently weaned for 8 h. Before infusion, 200 mg naloxone were administered to elevate quickly concentrations of naloxone. Blood samples were collected from sows at 15 min intervals for 24 h, beginning 8 h before and continuing until 8 h after imposition of treatments during the middle 8-h segment. Frequency of episodic release of LH and concentrations of prolactin were similar before, during and after infusion of saline. Average concentration of LH was greater during the last than during the middle 8-h segment when sows were given saline. Frequency of episodic release of LH increased and concentrations of prolactin decreased during infusion of naloxone or transient weaning; however, average concentration of LH increased during transient weaning, but not during infusion of naloxone. After transient weaning or infusion of naloxone, frequency of release of LH decreased, returning to pretreatment values in sows infused with naloxone but remaining above pretreatment values in sows subjected to transient weaning. At the resumption of suckling by litters in sows subjected to transient weaning, prolactin increased to levels not different from those observed during the 8-h pretreatment segment. Prolactin did not increase until 4-5 h after cessation of naloxone infusion. We conclude that continuous infusion of naloxone altered secretory patterns of LH and prolactin. Collectively these results provide evidence that the immediate effects of weaning on LH and prolactin in sows are mediated in part through a mechanism involving endogenous opioid peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号