首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   23篇
  2020年   1篇
  2016年   2篇
  2013年   3篇
  2012年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
The effects of fluoride on the tonoplast type ATPase and transport activities associated with sealed membrane vesicles isolated from sugarbeet (Beta vulgaris L.) storage tissue were examined. This anion had two distinct effects upon the proton-pumping vesicles. When ATP hydrolysis was measured in the presence of gramicidin D, significant inhibition (approximately 50%) only occurred when the fluoride concentration approached 50 millimolar. In contrast, the same degree of inhibition of proton transport occurred when the fluoride concentration was about 24 millimolar. Effects on proton pumping at this concentration of fluoride could be attributed to an inhibition of chloride movement which serves to dissipate the vesicle membrane potential. Valinomycin could partially restore ATPase activity in sealed vesicles which were inhibited by fluoride and this restoration occurred with a reduction in the membrane potential. Fluoride demonstrated a competitive interaction with chloride-stimulation of proton transport and inhibited the uptake of radioactive chloride into sealed vesicles. When the vesicles were allowed to develop a pH gradient in the absence of KCl, and KCl was subsequently added, fluoride reduced enhancement of the existing pH gradient by KCl. The results are consistent with a chloride carrier that is inhibited by fluoride.  相似文献   
2.
Sealed vesicles were isolated from a plant pathogenic fungus Phytophthora megasperma f. sp. glycinea using a modification of a method previously developed for plant plasma membrane vesicle isolation. Vanadate-sensitive, proton pumping microsomal membrane vesicles were resolved on a linear sucrose density gradient and found to comigrate with a vanadate-sensitive ATPase. Both the proton pumping and ATPase activity of these vesicles had a pH optimum of 6.5 and demonstrated similar properties with respect to substrate specificity and inhibitor sensitivity. These properties were in agreement with previously published data on the Phytophthora plasma membrane ATPase. In contrast with previous reports there was no K+ stimulation of the plasma membrane ATPase and the Km for Mg:ATP (1:1 concentration ratio) was higher (2.5 mM). A comparison of anion (potassium salts) effects upon delta pH and delta psi formation in sealed Phytophthora plasma membrane vesicles revealed a correspondence between the relative ability of anions to stimulate proton transport and to reduce delta psi. The relative order for this effect was KCl greater than KBr much greater than KMes, KNO3, KClO3, K2SO4. This study presents a method for the isolation of sealed vesicles from Phytophthora hyphae. It also provides basic information on the plasma membrane H+-ATPase and its associated proton pumping activity.  相似文献   
3.
The potential role of pyridine nucleotide oxidation in the energization and/or regulation of membrane transport was examined using sealed plasma membrane vesicles isolated from red beet (Beta vulgaris L.) storage tissue. In this system, pyridine nucleotide oxidation, which was enhanced in the presence of ferricyanide, occurred. In the presence or absence of ferricyanide, the oxidation of NADH was several-fold greater than the oxidation of NADPH, indicating that it was the preferred substrate for oxidation in this system. Ferricyanide reduction coupled to NADH oxidation did not require the transmembrane movement of reducing equivalents since ferricyanide incorporated inside the vesicles could not be reduced by NADH added externally to the vesicles, unless the vesicles were made leaky by the addition of 0.05% (v/v) Triton X-100. Using fluorescent probes for the measurement of transmembrane pH gradients and membrane potentials, it was determined that NADH oxidation did not result in the production of a proton electrochemical gradient or have any effect upon the proton electrochemical gradient produced by the plasma membrane H+-ATPase. The oxidation of NADH in the presence of ferricyanide did result in the acidification of the reaction medium. This acidification was unaffected by the addition of Gramicidin D and stimulated by the addition of 0.05% (v/v) Triton X-100, suggesting a scalar (nonvectorial) production of protons in the oxidation/reduction reaction. The results of this study suggest that the oxidation of pyridine nucleotides by plasma membrane vesicles is not related to energization of transport at the plasma membrane or modulation of the activity of the plasma membrane H+-ATPase.  相似文献   
4.
The GTP-driven component of Ca2+ uptake in red beet (Beta vulgaris L.) plasma membrane vesicles was further characterized to confirm its association with the plasma membrane Ca2+-translocating ATPase and assess its utility as a probe for this transport system. Uptake of 45Ca2+ in the presence of GTP demonstrated similar properties to those previously observed for red beet plasma membrane vesicles utilizing ATP with respect to pH optimum, sensitivity to orthovanadate, dependence on Mg:substrate concentration and dependence on Ca2+ concentration. Calcium uptake in the presence of GTP was also strongly inhibited by erythrosin B, a potent inhibitor of the plant plasma membrane Ca2+-ATPase. Furthermore, after treatment with EGTA to remove endogenous calmodulin, the stimulation of 45Ca2+-uptake by exogenous calmodulin was nearly equivalent in the presence of either ATP or GTP. Taken together these results support the proposal that GTP-driven 45Ca2+ uptake represents the capacity of the plasma membrane Ca2+-translocating ATPase to utilize this nucleoside triphosphate as an alternative substrate. When plasma membrane vesicles were phosphorylated with [γ-32P]-GTP, a rapidly turning over, 100 kilodalton phosphorylated peptide was observed which contained an acyl-phosphate linkage. While it is proposed that this peptide could represent the catalytic subunit of the plasma membrane Ca2+-ATPase, it is noted that this molecular weight is considerably lower than the 140 kilodalton size generally observed for plasma membrane Ca2+-ATPases present in animal cells.  相似文献   
5.
6.
7.
The selective emigration of blood born leukocytes into tissues is mediated, in part by interactions of Ig-like cell adhesion molecules (IgCAMs) expressed on vascular endothelium and their cognate ligands, the leukocyte integrins. Within mucosal lymphoid tissues and gastrointestinal sites the mucosal vascular addressin. MAdCAM-1 is the predominant IgCAM, mediating specific lymphocyte homing via interactions with its ligand on lymphocytes, the integrin alpha4beta7. Previous studies have shown that an essential binding motif resides in the first Ig domain of all IgCAMs, containing an acidic residue (D or E) preceded by an aliphatic residue (L or I) that resides in strand C or the CD loop. However, domain swap experiments with MAdCAM-1 and VCAM-1 have shown a requirement for both Ig domains 1 and 2 for efficient integrin binding. We describe the use of chimeric MAdCAM-1/VCAM-1 receptors and point mutations in MAdCAM-1 to define other sites that are required for binding to the integrin alpha4beta7. We find that, in addition to critical CD loop residues, other regions in both domain one and two contribute to MAdCAM-1/alpha4beta7 interactions, including a buried arginine residue in the F strand of domain one and several acidic residues in a highly extended DE ribbon in domain 2. These mutations, when placed in the recently solved crystal structure of human MAdCAM-1 give insight into the integrin binding preference of this unique receptor.  相似文献   
8.
The integrin alpha(4)beta(7) is the cell adhesion receptor for the mucosal vascular addressin MAdCAM-1, and this interaction is dominant in lymphocyte homing to Peyer's patch high endothelial venules, and plays key roles in lymphocyte recruitment at sites of inflammation. To identify alpha(4) subunit amino acids important for alpha(4)beta(7)/MAdCAM-1 interaction, we expressed mutant alpha(4) and wild type beta(7) chains in K562 cells and analyzed the effect of the mutations on cell adhesion to a soluble MAdCAM-1 (sMAdCAM-1-Ig). Transfectants expressing mutated alpha(4) at Tyr(187) displayed a substantial decrease in adhesion to this ligand, which was associated with a reduced alpha(4)beta(7)/sMAdCAM-1-Ig interaction, as determined by soluble binding assays. Addition of Mn(2+) to the adhesion assays did not restore the impaired adhesion. Mutations at alpha(4) Gln(152)Asp(153) also affected transfectant adhesion to sMAdCAM-1-Ig, but did not involve an alteration of alpha(4)beta(7)/MAdCAM-1 binding, and adhesion was restored by Mn(2+). Instead, mutations at alpha(4) Asn(123)Glu(124) did not affect this adhesion. Mutation of alpha(4) Tyr(187) abolished alpha(4)beta(7)-mediated cell adhesion to CS-1/fibronectin, an additional ligand for alpha(4)beta(7), while alpha(4) Gln(152)Asp(153) transfectant mutants showed a reduced adhesion. These results identify alpha(4) Tyr(187) as a key residue during receptor alpha(4)beta(7)/ligand interactions, indicating that it plays important roles in alpha(4)beta(7)-mediated leukocyte adhesion, and provide a potential target for therapeutic intervention in several inflammatory pathologies.  相似文献   
9.
V-type proton-translocating ATPases (V-ATPases) (EC 3.6.1.3) are electrogenic proton pumps involved in acidification of endomembrane compartments in all eukaryotic cells. V-ATPases from various species consist of 8 to 12 polypeptide subunits arranged into an integral membrane proton pore sector (V0) and a peripherally associated catalytic sector (V1). Several V-ATPase subunits are functionally and structurally conserved among all species examined. In yeast, a 36-kD peripheral subunit encoded by the yeast (Saccharomyces cerevisiae) VMA6 gene (Vma6p) is required for stable assembly of the V0 sector as well as for V1 attachment. Vma6p has been characterized as a nonintegrally associated V0 subunit. A high degree of sequence similarity among Vma6p homologs from animal and fungal species suggests that this subunit has a conserved role in V-ATPase function. We have characterized a novel Vma6p homolog from red beet (Beta vulgaris) tonoplast membranes. A 44-kD polypeptide cofractionated with V-ATPase upon gel-filtration chromatography of detergent-solubilized tonoplast membranes and was specifically cross-reactive with anti-Vma6p polyclonal antibodies. The 44-kD polypeptide was dissociated from isolated tonoplast preparations by mild chaotropic agents and thus appeared to be nonintegrally associated with the membrane. The putative 44-kD homolog appears to be structurally similar to yeast Vma6p and occupies a similar position within the holoenzyme complex.  相似文献   
10.
Intrinsic protein fluorescence may interfere with the visualization of proteins after SDS-polyacrylamide electrophoresis. In an attempt to analyze tear glycoproteins in gels, we ran tear samples and stained the proteins with a glycoprotein-specific fluorescent dye. The fluorescence detected was not limited to glycoproteins. There was strong intrinsic fluorescence of proteins normally found in tears after soaking the gels in 40% methanol plus 1-10% acetic acid and, to a lesser extent, in methanol or acetic acid alone. Nanograms of proteins gave visible native fluorescence and interfere with extrinsic fluorescent dye detection. Poly-L-lysine, which does not contain intrinsically fluorescent amino acids, did not fluoresce.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号