首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   5篇
  73篇
  2022年   1篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有73条查询结果,搜索用时 0 毫秒
1.
Oxidation of methionine residues is involved in several biochemical processes and in degradation of therapeutic proteins. The relationship between conformational stability and methionine oxidation in recombinant human interleukin-1 receptor antagonist (rhIL-1ra) was investigated to document how thermodynamics of unfolding affect methionine oxidation in proteins. Conformational stability of rhIL-1ra was monitored by equilibrium urea denaturation, and thermodynamic parameters of unfolding (DeltaGH2O, m, and Cm) were estimated at different temperatures. Methionine oxidation induced by hydrogen peroxide at varying temperatures was monitored during "coincubation" of rhIL-1ra with peptides mimicking specific regions of the reactive methionine residues in the protein. The coincubation study allowed estimation of oxidation rates in protein and peptide at each temperature from which normalized oxidation rate constants and activation energies were calculated. The rate constants for buried Met-11 in the protein were lower than for methionine in the peptide with an associated increase in activation energy. The rate constants and activation energy of solvent exposed methionines in protein and peptide were similar. The results showed that conformational stability, monitored using the Cm value, has an effect on oxidation rates of buried methionines. The rate constant of buried Met-11 correlated well with the Cm value but not DeltaGH2O. No correlation was observed for the oxidation rates of solvent-exposed methionines with any thermodynamic parameters of unfolding. The findings presented have implications in protein engineering, in design of accelerated stability studies for protein formulation development, and in understanding disease conditions involving protein oxidation.  相似文献   
2.
The conformational stability and flexibility of insulin containing a cross-link between the alpha-amino group of the A-chain to the epsilon-amino group of Lys29 of the B-chain was examined. The cross-link varied in length from 2 to 12 carbon atoms. The conformational stability was determined by guanidine hydrochloride-induced equilibrium denaturation and flexibility was assessed by H2O/D2O amide exchange. The cross-link has substantial effects on both conformational stability and flexibility which depend on its length. In general, the addition of a cross-link enhances conformational stability and decreases flexibility. The optimal length for enhanced stability and decreased flexibility was the 6-carbon link. For the 6-carbon link the Gibbs free energy of unfolding was 8.0 kcal/mol compared to 4.5 kcal/mol for insulin, and the amide exchange rate decreased by at least 3-fold. A very short cross-link (i.e. the 2-carbon link) caused conformational strain that was detectable by a lack of stabilization in the Gibbs free energy of unfolding and enhancement in the amide exchange rate compared to insulin. The effect of the cross-link length on insulin hydrodynamic properties is discussed relative to previously obtained receptor binding results.  相似文献   
3.
    
Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3M) salt concentrations, in dilute (<0.1M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li+, Na+, K+, Rb+, Cs+, GdnH+, and Ca2+), identity. The Q* decreased in the order F > Cl > Br > NO3 ∼ I > SCN > ClO4 ≫ SO42−, demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO42− anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface.  相似文献   
4.
5.
Unequal meiotic crossover: a frequent cause of NF1 microdeletions   总被引:7,自引:0,他引:7       下载免费PDF全文
Neurofibromatosis type 1 is a common autosomal dominant disorder caused by mutations of the NF1 gene on chromosome 17. In only 5%-10% of cases, a microdeletion including the NF1 gene is found. We analyzed a set of polymorphic dinucleotide-repeat markers flanking the microdeletion on chromosome 17 in a group of seven unrelated families with a de novo NF1 microdeletion. Six of seven microdeletions were of maternal origin. The breakpoints of the microdeletions of maternal origin were localized in flanking paralogous sequences, called "NF1-REPs." The single deletion of paternal origin was shorter, and no crossover occurred on the paternal chromosome 17 during transmission. Five of the six cases of maternal origin were informative, and all five showed a crossover, between the flanking markers, after maternal transmission. The observed crossovers flanking the NF1 region suggest that these NF1 microdeletions result from an unequal crossover in maternal meiosis I, mediated by a misalignment of the flanking NF1-REPs.  相似文献   
6.
Pan B  Abel J  Ricci MS  Brems DN  Wang DI  Trout BL 《Biochemistry》2006,45(51):15430-15443
The effect of protein conformation on the rate of chemical degradation is poorly understood. To address the role of structure on chemical degradation kinetics, comparative oxidation studies of methionine residues in recombinant human granulocyte colony-stimulating factor (rhG-CSF) were performed. The kinetics of oxidation of methionine residues by hydrogen peroxide (H2O2) in rhG-CSF and corresponding chemically synthesized peptides thereof was measured at different temperatures. To assess structural effects, equilibrium denaturation experiments also were conducted on rhG-CSF, yielding the free energy of unfolding as a function of temperature. A comparison of the relative rates of oxidation of methionine residues in short peptides with those of corresponding methionine residues in rhG-CSF yields an understanding of how protein tertiary structure affects oxidation reactions. For the temperature range that was studied, 4-45 degrees C, the oxidation rate constants followed an Arrhenius equation quite well, suggesting the lack of temperature-induced local structural perturbations that affect chemical degradation rates. One of the four methionine residues, Met 122, exhibited an activation energy significantly different from that of the corresponding peptide. Extrapolation of kinetic data predicts non-Arrhenius behavior around the melting temperature. Three phenomenological models based on different mechanisms are discussed, and an application to shelf life prediction of pharmaceuticals is presented.  相似文献   
7.
We report three cases with a typical diploid/triploid mixoploidy. Cytogenetic analysis showed a normal diploid karyotype in peripheral blood lymphocytes and a mixture of diploid and triploid cells in skin fibroblasts. We analysed microsatellite markers in patients blood lymphocytes and skin fibroblasts and compared the results with the microsatellite markers in the parents. The extra haploid set was in all three cases of maternal origin. In one case the markers were not very informative but in two cases pericentromeric markers showed a single dose of one paternal allele and a double dose of one maternal allele, more telomeric markers showed one paternal allele and two different maternal alleles. These observations can only be explained by the inclusion of the second polar body in one of the blastomeres at the cleavage stage.  相似文献   
8.
  总被引:1,自引:0,他引:1  
After a cytokine binds to its receptor on the cell surface (pH approximately 7), the complex is internalized into acidic endosomal compartments (pH approximately 5-6), where partially unfolded intermediates can form. The nature of these structural transitions was studied for wild-type interleukin-2 (IL-2) and wild-type granulocyte colony-stimulating factor (G-CSF). A noncoincidence of denaturation transitions in the secondary and tertiary structure of IL-2 and tertiary structural perturbations in G-CSF suggest the presence of an intermediate state for each, a common feature of this structural family of four-helical bundle proteins. Unexpectedly, both IL-2 and G-CSF display monotonic increases in stability as the pH is decreased from 7 to 4. We hypothesize that such cytokines with cell-based clearance mechanisms in vivo may have evolved to help stabilize endosomal complexes for sorting to lysosomal degradation. We show that mutants of both IL-2 and G-CSF have differential stabilities to their wild-type counterparts as a function of pH, and that these differences may explain the differences in ligand trafficking and depletion. Further understanding of the structural changes accompanying unfolding may help guide cytokine design with respect to ligand binding, endocytic trafficking, and, consequently, therapeutic efficacy.  相似文献   
9.
10.
    
Gaining a better understanding of the denatured state ensemble of proteins is important for understanding protein stability and the mechanism of protein folding. We studied the folding kinetics of ribonuclease Sa (RNase Sa) and a charge-reversal variant (D17R). The refolding kinetics are similar, but the unfolding rate constant is 10-fold greater for the variant. This suggests that charge-charge interactions in the denatured state and the transition state ensembles are more favorable in the variant than in RNase Sa, and shows that charge-charge interactions can influence the kinetics and mechanism of protein folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号