首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   20篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有93条查询结果,搜索用时 62 毫秒
1.
2.
3.
4.
The region of the clock gene period (per) that encodes a repetitive tract of threonine-glycine (Thr-Gly) pairs has been compared between Dipteran species both within and outside the Drosophilidae. All the non- Drosophilidae sequences in this region are short and present a remarkably stable picture compared to the Drosophilidae, in which the region is much larger and extremely variable, both in size and composition. The accelerated evolution in the repetitive region of the Drosophilidae appears to be mainly due to an expansion of two ancestral repeats, one encoding a Thr-Gly dipeptide and the other a pentapeptide rich in serine, glycine, and asparagine or threonine. In some drosophilids the expansion involves a duplication of the pentapeptide sequence, but in Drosophila pseudoobscura both the dipeptide and the pentapeptide repeats are present in larger numbers. In the nondrosophilids, however, the pentapeptide sequence is represented by one copy and the dipeptide by two copies. These observations fulfill some of the predictions of recent theoretical models that have simulated the evolution of repetitive sequences.   相似文献   
5.
6.
7.
8.
Schaefer JB  Breeden LL 《Cell》2004,117(7):849-850
  相似文献   
9.
Both in yeast and in higher eukaryotes, genomic instability often ensues when the G1/S transition machinery is deregulated and cells are forced to enter S phase prematurely. This case of acquired mutability is particularly important, since a majority of genes mutated in human cancers encode factors that influence the G1/S transition. The precocious G1/S transition often results in a sub-optimal S phase. Moreover, the problems generated in such an S phase can escape detection by the cellular surveillance systems, allowing undeterred mitosis. This review focuses primarily on budding yeast data, where progress has been made in the past couple of years towards a mechanistic understanding of the underlying processes. A dual surveillance system is discussed, which relies on the presence of licensed but unfired origins and stalled replication forks to deter mitosis until replication is complete. Normally, this dual surveillance system allows S phase to be flexible in duration in a variety of growth conditions, when the fork density and/or fork progression rates can vary widely. However, precocious exit from G1 can have a disabling effect on this surveillance system. Premature exit from G1 can cut short the licensing of origins and the accumulation of resources for the upcoming replication, while giving a cell a false indication that it is metabolically ready to conduct S phase.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号