首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1980年   2篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
1.
S-Adenosylhomocysteine hydrolase (AdoHcy-nase) is a key enzyme in transmethylation reactions. The objective of the present study was to examine the potential antiretroviral activities of novel mechanism-based irreversible AdoHcy-nase inhibitors. (Z)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (ZDDFA), (E)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (EDDFA), (Z)-4',5'-didehydro-5'-deoxy-5'-chloroadenosine (ZDDCA) and 5'-deoxy-5'-acetylenic adenosine (DAA) inhibited AdoHcy-nase activity with Ki values of 0.55, 1.04, greater than 10.0 and 3.30 microM, respectively. These four compounds were tested for antiviral activity in vitro against Moloney leukemia virus (MoLV) in the XC-plaque assay. MoLV replication in murine fibroblasts (SC-1) was inhibited by ZDDFA, EDDFA and DAA with IC50 values of 0.05, 0.25 and 3.30 micrograms/ml, respectively. ZDDCA did not inhibit MoLV infection at the concentrations tested. Antiviral activity correlated with the ability of the individual compounds to maintain sustained elevations in intracellular S-adenosylhomocysteine (AdoHcy) concentrations in the SC-1 cells. ZDDFA, the most potent inhibitor of AdoHcy-nase and MoLV was also the most active in maintaining sustained elevations in intracellular AdoHcy levels. The antiviral activity of ZDDFA was also examined in murine C3H1OT1/2 fibroblasts which constitutively produce MoLV. Pretreatment with ZDDFA (1.0 microgram/ml) for 24 hr inhibited virus production by 88%. Similar to the SC-1 cells, and concomitant with enzyme inhibition, there was a 300-fold increase in AdoHcy levels in ZDDFA (1.0 microgram/ml) treated C3H1OT1/2 cells. Incorporation of a [3H]methyl group from tritiated S-adenosylmethionine into total RNA in C3H1OT1/2 cells was inhibited by ZDDFA without affecting cell viability. These results suggest that mechanism-based inhibitors of AdoHcy-nase, such as ZDDFA, may have potential as antiretroviral agents.  相似文献   
2.
3.
4.
5.
Botulinum neurotoxins (BoNTs) are the most lethal of biological substances, and are categorized as class A biothreat agents by the Centers for Disease Control and Prevention. There are currently no drugs to treat the deadly flaccid paralysis resulting from BoNT intoxication. Among the seven BoNT serotypes, the development of therapeutics to counter BoNT/A is a priority (due to its long half-life in the neuronal cytosol and its ease of production). In this regard, the BoNT/A enzyme light chain (LC) component, a zinc metalloprotease responsible for the intracellular cleavage of synaptosomal-associated protein of 25 kDa, is a desirable target for developing post-BoNT/A intoxication rescue therapeutics. In an earlier study, we reported the high throughput screening of a library containing 70,000 compounds, and uncovered a novel class of benzimidazole acrylonitrile-based BoNT/A LC inhibitors. Herein, we present both structure–activity relationships and a proposed mechanism of action for this novel inhibitor chemotype.  相似文献   
6.
Activation of vascular endothelium plays an essential role in vasoocclusion in sickle cell disease. The anti-inflammatory agents dexamethasone and adhesion molecule-blocking antibodies were used to inhibit endothelial cell activation and hypoxia-induced vasoocclusion. Transgenic sickle mice, expressing human alpha-, beta(S)-, and beta(S-Antilles)-globins, had an activated vascular endothelium in their liver, lungs, and skin, as exhibited by increased activation of NF-kappaB compared with normal mice. NF-kappaB activation increased further in the liver and skin after sickle mice were exposed to hypoxia. Sickle mice had decreases in red blood cell (RBC) velocities and developed vasoocclusions in subcutaneous venules in response to hypoxia. Dexamethasone pretreatment prevented decreases in RBC velocities and inhibited vasoocclusions and leukocyte-endothelium interactions in venules after hypoxia. Dexamethasone treatment inhibited NF-kappaB, VCAM-1, and ICAM-1 expression in the liver, lungs, and skin of sickle mice after hypoxia-reoxygenation. VCAM-1 or ICAM-1 blockade with monoclonal antibodies mimicked dexamethasone by inhibiting vasoocclusion and leukocyte adhesion in sickle mice, demonstrating that endothelial cell activation and VCAM-1 and ICAM-1 expression are necessary for hypoxia-induced vasoocclusion in sickle mice. VCAM-1, ICAM-1, and vasoocclusion increased significantly 3 days after dexamethasone discontinuation, possibly explaining rebounds in vasoocclusive crises observed after withdrawal of glucocorticosteroids in sickle patients. We conclude that anti-inflammatory treatments that inhibit endothelial cell activation and adhesion molecule expression can inhibit vasoocclusion in sickle cell disease. Rebounds in vasoocclusive crises after dexamethasone withdrawal are caused by rebounds in endothelial cell activation.  相似文献   
7.
Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats.  相似文献   
8.
A second-generation series of substituted methylenecyclopropane nucleosides (MCPNs) has been synthesized and evaluated for antiviral activity against a panel of human herpesviruses, and for cytotoxicity. Although alkylated 2,6-diaminopurine analogs showed little antiviral activity, the compounds containing ether and thioether substituents at the 6-position of the purine did demonstrate potent and selective antiviral activity against several different human herpesviruses. In the 6-alkoxy series, antiviral activity depended on the length of the ether carbon chain, with the optimum chain length being about four carbon units long. For the corresponding thioethers, compounds containing secondary thioethers were more potent than those with primary thioethers.  相似文献   
9.
While much is known about the attachment of the chlamydiae to the host cell and intracellular events during the developmental cycle, little is known about the mechanism(s) by which elementary bodies exit the cell. In this report, we use the guinea-pig conjunctival model of Chlamydia caviae infection to present in vivo ultrastructural evidence supporting two mechanisms for release of chlamydiae from the mucosal epithelia. Four days after infection, histopathologic observation shows an intense infiltration of polymorphonuclear leukocytes (PMN) in the conjunctival epithelium. Using transmission electron microscopy, a gradient-directed PMN response to chlamydiae-infected epithelial cells was observed. As PMN infiltration intensifies, epithelial hemidesmosome/integrin/focal adhesion adherence with the basal lamina is disconnected and PMNs literally lift off and release infected superficial epithelia from the mucosa. Many of these infected cells appear to be healthy with intact microvilli, nuclei, and mitochondria. While lysis of some infected cells occurs with release of chlamydiae into the extracellular surface milieu, the majority of infected cells are pushed off the epithelium. We propose that PMNs play an active role in detaching infected cells from the epithelium and that these infected cells eventually die releasing organisms but, in the process, move to new tissue sites via fluid dynamics.  相似文献   
10.
Throughout native artery, collagen and elastin play an important role, providing a mechanical backbone, preventing vessel rupture, and promoting recovery under pulsatile deformations. The goal of this study was to mimic the structure of native artery by fabricating a multi-layered electrospun conduit composed of poly(caprolactone) (PCL) with the addition of elastin and collagen with blends of 45-45-10, 55-35-10, and 65-25-10 PCL-ELAS-COL to demonstrate mechanical properties indicative of native arterial tissue, while remaining conducive to tissue regeneration. Whole grafts and individual layers were analyzed using uniaxial tensile testing, dynamic compliance, suture retention, and burst strength. Compliance results revealed that changes to the middle/medial layer changed overall graft behavior with whole graft compliance values ranging from 0.8 - 2.8 % / 100 mmHg, while uniaxial results demonstrated an average modulus range of 2.0 - 11.8 MPa. Both modulus and compliance data displayed values within the range of native artery. Mathematical modeling was implemented to show how changes in layer stiffness affect the overall circumferential wall stress, and as a design aid to achieve the best mechanical combination of materials. Overall, the results indicated that a graft can be designed to mimic a tri-layered structure by altering layer properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号