首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Interest in phytosterol contents due to their potential benefits for human health has been largely documented in several crop species. Studies were focused mainly on total sterol content and their concentration or distribution in seed. This study aimed at providing new insight into the genetic control of total and individual sterol contents in sunflower seed through QTL analyses in a RIL population characterized over 2?years showing contrasted rainfall during seed filling. Results indicated that 13 regions on 9 linkage groups were involved in different phytosterol traits. Most of the QTL mapped were stable across years in spite of contrasted growing conditions. Some of them explained up to 30?% of phenotypic variation. Two QTL, located on LG10, near b1, and on LG14, were found to co-localize with QTL for oil content, indicating that likely, a part of the genetic variation for sterol content is only the result of genetic variation for oil content. However, three other QTL, stable over the 2?years, were found on LG1, LG4 and LG7 each associated with a particular class of sterols, suggesting that some enzymes known to be involved in the sterol metabolic pathway may determine the specificity of sterol profiles in sunflower seeds. These results suggest that it may be possible to introduce these traits as criteria in breeding programmes for quality in sunflower. The molecular markers linked to genetic factors controlling phytosterol contents could help selection during breeding programs.  相似文献   
2.
Two strains of Bradyrhizobium japonicum, recognizable by their intrinsic resistance to high levels of antibiotics and their serological features were introduced into three calcareous soils under field conditions. These strains were re-isolated 16 or 20 years later and compared with the parental strains kept lyophilized. In the Dijon location, the survival was high although soybean was never grown in the field. But the B. japonicum completely disappeared in the Montpellier field after 10 years under vineyard. In the Toulouse field after the two initially introduced strains, inoculation of subsequent soybean crops with a new strain enabled this strain to occupy 70–80% of the nodules; these results suggest that under such conditions the problem of competition can be solved by repeated inoculation. In this field, the number of introduced B. japonicum remained high during 4 years without soybeans, but a new inoculation would be necessary after 5 years. In the two fields where the survival was high, the two strains remained at about the same relative level as at introduction, there was no detectable exchange of characters between them. With regards to agronomic characteristics, there were no important changes in the competitivity of the strains. Among the eight field isolates tested in a greenhouse for efficiency by comparison with eight lyophilized isolates, seven showed no significant difference for the total weight of soybean or seed yield but one field isolate showed a loss of efficiency corresponding to 27% less seed weight. This long-term experiment allowed us to conclude that the B. japonicumstrains used were stable for many characters, but variations in efficiency may rarely occur.  相似文献   
3.
Roche J  Hewezi T  Bouniols A  Gentzbittel L 《Planta》2007,226(3):601-617
A sunflower cDNA microarray containing about 800 clones covering major metabolic and signal transduction pathways was used to study gene expression profiles in leaves and embryos of drought-tolerant and -sensitive genotypes subjected to water-deficit stress under field conditions. Using two-step ANOVA normalization and analysis models, we identified 409 differentially expressed genes among genotypes, water treatment and organs. The majority of the cDNA clones differentially expressed under water stress was found to display opposite gene expression profiles in drought-tolerant genotype compared to drought-sensitive genotype. These dissimilarities suggest that the difference between tolerant and non-tolerant plants seems to be associated with changes in qualitative but not quantitative mRNA expression. Comparing leaves and embryos, 82 cDNA clones showing organ-specific variation in gene expression levels were identified in response to water stress across genotypes. Genes related to amino acids and carbohydrates metabolisms, and signal transduction were induced in embryos and repressed in leaves; suggesting that vegetative and reproductive organs respond differentially to water stress. Adaptive mechanisms controlling water deficit tolerance are proposed and discussed.  相似文献   
4.
5.

Newscorner

Referee acknowledgment  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号