首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2002年   1篇
  2000年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.

Background and Aims

The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented.

Methods

Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated.

Key Results

The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas.

Conclusions

Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.  相似文献   
2.
The life and death of T cells is controlled to a large extent by the relative amounts of Bcl-2-related proteins they contain. The antiapoptotic protein Bcl-2 and the proapoptotic protein Bim are particularly important in this process with the amount of Bcl-2 per cell dropping by about one-half when T cells prepare to die. In this study we show that Bcl-2 and Bim each control the expression of the other. Absence of Bim leads to a drop in the amount of intracellular Bcl-2 protein, while having no effect on the amounts of mRNA for Bcl-2. Conversely, high amounts of Bcl-2 per cell allow high amounts of Bim, although in this case the effect involves increases in Bim mRNA. These mutual effects occur even if Bcl-2 is induced acutely. Thus these two proteins control the expression of the other, at either the protein or mRNA level.  相似文献   
3.
The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+) T cell response. Lymphoma cells transplanted into syngeneic wild type (WT) mice or Jalpha18(-/-) mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+) T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/-) mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+) T cells. In contrast, lymphoma growth in CD1d1(-/-) mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+) T cell response to B cell lymphoma by opposing the effects of type II NKT cells.  相似文献   
4.
5.
D N Levy  Y Refaeli    D B Weiner 《Journal of virology》1995,69(2):1243-1252
The vpr gene product of human immunodeficiency virus (HIV) and simian immunodeficiency virus is a virion-associated regulatory protein that has been shown using vpr mutant viruses to increase virus replication, particularly in monocytes/macrophages. We have previously shown that vpr can directly inhibit cell proliferation and induce cell differentiation, events linked to the control of HIV replication, and also that the replication of a vpr mutant but not that of wild-type HIV type 1 (HIV-1) was compatible with cellular proliferation (D. N. Levy, L. S. Fernandes, W. V. Williams, and D. B. Weiner, Cell 72:541-550, 1993). Here we show that purified recombinant Vpr protein, in concentrations of < 100 pg/ml to 100 ng/ml, increases wild-type HIV-1 replication in newly infected transformed cell lines via a long-lasting increase in cellular permissiveness to HIV replication. The activity of extracellular Vpr protein could be completely inhibited by anti-Vpr antibodies. Extracellular Vpr also induced efficient HIV-1 replication in newly infected resting peripheral blood mononuclear cells. Extracellular Vpr transcomplemented a vpr mutant virus which was deficient in replication in promonocytic cells, restoring full replication competence. In addition, extracellular Vpr reactivated HIV-1 expression in five latently infected cell lines of T-cell, B-cell, and promonocytic origin which normally express very low levels of HIV RNA and protein, indicating an activation of translational or pretranslational events in the virus life cycle. Together, these results describe a novel pathway governing HIV replication and a potential target for the development of anti-HIV therapeutics.  相似文献   
6.
Transgenic mice have been used to explore the role of chromosomal translocations in the genesis of tumors. But none of these efforts has actually involved induction of a translocation in vivo. Here we report the use of Cre recombinase to replicate in vivo the t(8;21) translocation found in human acute myeloid leukemia (AML). As in the human tumors, the murine translocation fuses the genes AML1 and ETO. We used homologous recombination to place loxP sites at loci that were syntenic with the break points for the human translocation. Cre activity was provided in mice by a transgene under the control of the Nestin promoter, or in cultured B cells by infecting with a retroviral vector encoding Cre. In both instances, Cre activity mediated interchromosomal translocations that fused the AML1 and ETO genes. Thus, reciprocal chromosomal translocations that closely resemble rearrangements found in human cancers can be achieved in mice.  相似文献   
7.
The human immunodeficiency virus (HIV)-1 envelope glycoprotein is synthesized as a precursor (gp160) and subsequently cleaved to generate the external gp120 and transmembrane gp41 glycoproteins. Both gp120 and gp41 have been demonstrated to mediate critical functions of HIV, including viral attachment and fusion with the cell membrane. The antigenic variability of the HIV-1 envelope glycoprotein has presented a significant problem in the design of appropriate and successful vaccines and offers one explanation for the ability of HIV to evade immune surveillance. Therefore, the development and characterization of functional antibodies against conserved regions of the envelope glycoprotein is needed. Because of this need, we generated a panel of murine monoclonal antibodies (MuMabs) against the HIV-1 envelope glycoprotein. To accomplish this, we immunized Balb/C mice with a recombinant glycoprotein 160 (gp160) that was synthesized in a baculovirus expression system. From the growth-positive hybridomas, three MuMabs were generated that demonstrated significant reactivity with recombinant gp120 but failed to show reactivity against HIV-1 gp41, as determined by enzyme-linked immunosorbent assay (ELISA). Using vaccinia constructs that synthesize variant truncated subunits of gp160, we were able to map reactivity of all three of the Mabs (ID6, AC4, and AD3) to the first 204 residues of gp120 (i.e., the N terminus of gp120) via Western blot analysis. Elucidation of the epitopes for these Mabs may have important implications for inhibition of infection by HIV-1. Our initial attempts to map these Mabs with linear epitopes have not elucidated a specific antigenic determinant; however, several physical characteristics have been determined that suggest a continuous surface epitope. Although these antibodies failed to neutralize cell-free or cell-associated infection by HIV-1, they did mediate significant antibody-dependent cellular cytotoxicity (ADCC) activity, indicating potential therapeutic utility. In summary, these data suggest the identification of a potentially novel site in the first 200 aa of gp120 that mediates ADCC.  相似文献   
8.
Most tumours contain a heterogeneous population of cancer cells, which harbour a range of genetic mutations and have probably undergone deregulated differentiation programmes that allow them to adapt to tumour microenvironments. Another explanation for tumour heterogeneity might be that the cells within a tumour are derived from tumour‐initiating cells through diverse differentiation programmes. Tumour‐initiating cells are thought to constitute one or more distinct subpopulations within a tumour and to drive tumour initiation, development and metastasis, as well as to be responsible for their recurrence after therapy. Recent studies have raised crucial questions about the nature, frequency and importance of melanoma‐initiating cells. Here, we discuss our current understanding of melanoma‐initiating cells and outline several approaches that the scientific community might consider to resolve the controversies surrounding these cells.  相似文献   
9.
Summary Cellular subclones of high and low tumorigenicity obtained from a mouse c-Ha-ras-transformed clone, were examined for their sensitivity to tumornecrosis-factor (TNF)-mediated cytotoxicity. Cells of the highly tumorigenic subclones showed a significantly enhanced resistance to the cytotoxic effect of TNF plus cyclohexamide (CHI) as compared to cells of the lowtumorigenic subclones. The enhanced resistance to TNF+CHI was not due to a lower expression of TNF receptors on the cells. The c-Ha-ras-transfected cells were transformed and maintained in culture only (C cells). In vivo passage of cells of the initially low-tumorigenic c-Ha-ras subclones through the mouse significantly enhanced the tumorigenic potential of these CTC cells (culture/tumor/culture). In correlation with their enhanced tumorigenicity, the CTC cells were highly resistant to TNF-mediated cytotoxicity as compared to C cells of the same subclone. Furthermore, the involvement of TNF in determining the tumorigenic phenotype of the c-Ha-ras-transformed cells was demonstrated in a more direct manner. Cells of a c-Ha-ras-transformed low-tumorigenic, highly TNF-sensitive subclone were selected by repeated cycles of in vitro exposure to TNF. As a result, a stable, highly TNF-resistant population of cells emerged. These TNF-resistant cells caused more tumors in mice as compared to their original TNF-sensitive cells. These results show that the resistance to the cytotoxic effect of TNF plus cyclohexamide may be involved, at least partially, in the tumorigenic potential of c-Ha-ras-transformed cells and suggest a possible role for TNF in the enhancement of the tumorigenic potential of these cells in mice.  相似文献   
10.
Respiratory infections, including Mycoplasma pneumoniae (Mp), contribute to asthma pathobiology. To date, the mechanisms underlying the increased susceptibility of asthmatics to airway Mp infection remain unclear. Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is a recently described large airway epithelial cell-derived molecule that was predicted to exert host defense activities. However, SPLUNC1 function and regulation in an infectious or allergic milieu are still unknown. We determined host defense and anti-inflammatory functions of SPLUNC1 protein in Mp infection and the regulation of SPLUNC1 by Mp and allergic inflammation (e.g., IL-13). SPLUNC1 function was examined in Mp or human airway epithelial cell cultures by using SPLUNC1 recombinant protein, overexpression and RNA interference. Human and mouse bronchial epithelial SPLUNC1 was examined using immunostaining, Western blotting, ELISA, laser capture microdissection, and real-time PCR. Mouse models of Mp infection and allergic inflammation and air-liquid interface cultures of normal human primary bronchial epithelial cells were used to study SPLUNC1 regulation by Mp and IL-13. We found that: 1) SPLUNC1 protein decreased Mp levels and inhibited epithelial IL-8 production induced by Mp-derived lipoproteins; 2) normal human and mouse large airway epithelial cells expressed high levels of SPLUNC1; and 3) although Mp infection increased SPLUNC1, IL-13 significantly decreased SPLUNC1 expression and Mp clearance. Our results suggest that SPLUNC1 serves as a novel host defense protein against Mp and that an allergic setting markedly reduces SPLUNC1 expression, which may in part contribute to the persistent nature of bacterial infections in allergic airways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号