首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   14篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   4篇
  1992年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1916年   1篇
排序方式: 共有105条查询结果,搜索用时 109 毫秒
1.
Lactaldehyde dehydrogenase is an enzyme involved in the aerobic metabolism of fucose in wild type Escherichia coli, and glycolaldehyde dehydrogenase is an enzyme involved in the metabolism of ethylene glycol in mutant cells able to utilize this glycol. Both enzyme sources display oxidative activity on either substrate with a constant ratio between these activities. We have found that both enzymatic activities present the same electrophoretic mobility when crude extracts were electrophoresed in polyacrylamide gels and the gels stained for enzyme activities. Furthermore, both enzymatic activities co-chromatograph in a DEAE-Sephadex column. If lactaldehyde dehydrogenase of wild type cells is purified near homogeneity and the purification procedure is screened for both aldehydes as substrates, only one enzyme is apparent, giving again a constant ratio between lactaldehyde and glycolaldehyde dehydrogenase activities. Genetic evidence of the fact that both activities are functions of the same protein is provided by the observation that mutation to thermosensitivity for the production of lactaldehyde dehydrogenase affected in the same way the production of glycolaldehyde dehydrogenase. Glycolaldehyde dehydrogenase from mutant cells is purified in a procedure coincident with the lactaldehyde dehydrogenase purification, yielding a single enzyme electrophoretically indistinguishable from the purified lactaldehyde dehydrogenase. Peptide mapping of the purified preparation after digestion with chymotrypsin or Staphylococcus aureus protease V8 gives an indistinguishable band pattern between both enzymes.  相似文献   
2.
Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization.  相似文献   
3.
Escherichia coli are capable of growing anaerobically on L-rhamnose as a sole source of carbon and energy and without any exogenous hydrogen acceptor. When grown under such condition, synthesis of a nicotinamide adenine dinucleotide-linked L-lactaldehydepropanediol oxidoreductase is induced. The functioning of this enzyme results in the regeneration of nicotinamide adenine dinucleotide. The enzyme was purified to electrophoretic homogeneity. It has a molecular weight of 76,000, with two subunits that are indistinguishable by electrophoretic mobility. The enzyme reduces L-lactaldehyde to L-1,2-propanediol with reduced nicotinamide adenine dinucleotide as a cofactor. The Km were 0.035 mM L-lactaldehyde and 1.25 mM L-1,2-propanediol, at pH 7.0 and 9.5, respectively. The enzyme acts only on the L-isomers. Strong substrate inhibition was observed with L-1,2-propanediol (above 25 mM) in the dehydrogenase reaction. The enzyme has a pH optimum of 6.5 for the reduction of L-lactaldehyde and of 9.5 for the dehydrogenation of L-1,2-propanediol. The enzyme is, according to the parameters presented in this report, indistinguishable from the propanediol oxidoreductase induced by anaerobic growth on fucose.  相似文献   
4.

Background

The Centers for Disease Control and Prevention recommends nontargeted opt-out HIV screening in healthcare settings. Cost effectiveness is critical when considering potential screening methods. Our goal was to compare programmatic costs of nontargeted opt-out rapid HIV screening with physician-directed diagnostic rapid HIV testing in an urban emergency department (ED) as part of the Denver ED HIV Opt-Out Trial.

Methods

This was a prospective cohort study nested in a larger quasi-experiment. Over 16 months, nontargeted rapid HIV screening (intervention) and diagnostic rapid HIV testing (control) were alternated in 4-month time blocks. During the intervention phase, patients were offered HIV testing using an opt-out approach during registration; during the control phase, physicians used a diagnostic approach to offer HIV testing to patients. Each method was fully integrated into ED operations. Direct program costs were determined using the perspective of the ED. Time-motion methodology was used to estimate personnel activity costs. Costs per patient newly-diagnosed with HIV infection by intervention phase, and incremental cost effectiveness ratios were calculated.

Results

During the intervention phase, 28,043 eligible patients were included, 6,933 (25%) completed testing, and 15 (0.2%, 95% CI: 0.1%–0.4%) were newly-diagnosed with HIV infection. During the control phase, 29,925 eligible patients were included, 243 (0.8%) completed testing, and 4 (1.7%, 95% CI: 0.4%–4.2%) were newly-diagnosed with HIV infection. Total annualized costs for nontargeted screening were $148,997, whereas total annualized costs for diagnostic HIV testing were $31,355. The average costs per HIV diagnosis were $9,932 and $7,839, respectively. Nontargeted HIV screening identified 11 more HIV infections at an incremental cost of $10,693 per additional infection.

Conclusions

Compared to diagnostic testing, nontargeted HIV screening was more costly but identified more HIV infections. More effective and less costly testing strategies may be required to improve the identification of patients with undiagnosed HIV infection in the ED.  相似文献   
5.
6.
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.  相似文献   
7.

Background

The methylerythritol phosphate pathway for isoprenoid biosynthesis is an attractive target for the design of new specific antibiotics for the treatment of gastrointestinal diseases associated with the presence of the bacterium Helicobacter pylori since this pathway which is essential to the bacterium is absent in humans.

Results

This work reports the molecular cloning of one of the genes of the methylerythritol phosphate pathway form H. pylori (ispDF; HP_1440) its expression in Escherichia coli and the functional characterization of the recombinant enzyme. As shown by genetic complementation and in vitro functional assays the product of the ispDF gene form H. pylori is a bifunctional enzyme which can replace both CDP-methylerythritol synthase and methylerythritol cyclodiphosphate synthase from E. coli.

General significance

Designing inhibitors that affect at the same time both enzyme activities of the H. pylori bifunctional enzyme (i.e. by disrupting protein oligomerization) would result in more effective antibiotics which would be able to continue their action even if the bacterium acquired a resistance to another antibiotic directed against one of the individual activities.

Conclusion

The bifunctional enzyme would be an excellent target for the design of new, selective antibiotics for the treatment of H. pylori associated diseases.  相似文献   
8.
9.
Protein engineering is a promising tool to obtain stable proteins. Comparison between homologous thermophilic and mesophilic enzymes from a given structural family can reveal structural features responsible for the enhanced stability of thermophilic proteins. Structures from pig heart cytosolic and Thermus flavus malate dehydrogenases (cMDH, Tf MDH), two proteins showing a 55% sequence homology, were compared with the aim of increasing cMDH stability using features from the Thermus flavus enzyme. Three potential salt bridges from Tf MDH were selected on the basis of their location in the protein (surface R176-D200, inter-subunit E57-K168 and intrasubunit R149-E275) and implemented on cMDH using site-directed mutagenesis. Mutants containing E275 were not produced in any detectable amount, which shows that the energy penalty of introducing a charge imbalance in a region that was not exposed to solvent was too unfavourable to allow proper folding of the protein. The salt bridge R149-E275, if formed, would not enhance stability enough to overcome this effect. The remaining mutants were expressed and active and no differences from wild-type other than stability were found. Of the mutants assayed, Q57E/L168K led to a stability increase of 0.4 kcal/mol, as determined by either guanidinium chloride denaturalization or thermal inactivation experiments. This results in a 15 degrees C shift in the optimal temperature, thus confirming that the inter-subunit salt bridge initially present in the T.flavus enzyme was formed in the cMDH structure and that the extra energy obtained is transformed into an increase in protein stability. These results indicate that the use of structural features of thermophilic enzymes, revealed by a detailed comparison of three-dimensional structures, is a valid strategy to improve the stability of mesophilic malate dehydrogenases.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号