首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   6篇
  2023年   1篇
  2021年   5篇
  2020年   7篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   6篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2002年   1篇
  1999年   1篇
  1983年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
The SCE base level frequency and SCE levels induced by far-UV (254 nm) treatment of cells in early G1 and early S phases of the cell cycle were significantly higher in leukocytes from heroin addicts as compared to controls. The increased SCE levels in addicts was greatest at base level and smallest after UV irradiation of cells in S phase. These results corroborate and extend our previous findings of increased chromosome damage and reduced DNA-repair synthesis in heroin users. Since opiates do not directly damage DNA, the elevated cytogenetic effects associated with opiate use probably arise from secondary promotional effects related to opiate-mediated alterations in leukocyte metabolism.  相似文献   
2.
WW domain binding protein 1‐like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6‐RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non‐haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4‐family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l‐deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.  相似文献   
3.
Tuberculosis (TB) is one of the most devastating infectious diseases worldwide. Whilst global burden estimates for M. tuberculosis infection (MtTB) are well established, accurate data on the contribution of zoonotic TB (zTB) caused by M. bovis or M. caprae to human TB are scarce. The association of M. bovis infection with extrapulmonary tuberculosis has been suggested repeatedly, though there is little scientific evidence available to support this relationship. The present study aimed to determine globally the occurrence of extrapulmonary TB and the primary site (i.e. primary body location affected) of zTB in comparison with MtTB, based on previously published reports. A systematic literature review was conducted in 32 different bibliographic databases, selecting reports on zTB written in English, French, German, Spanish or Portuguese. Data from 27 reports from Africa, America, Europe and the Western Pacific Region were extracted for analyses. Low income countries, in Africa and South-East Asia, were highly underrepresented in the dataset. The median proportion of extrapulmonary TB cases was significantly increased among zTB in comparison with data from registries of Europe and USA, reporting mainly MtTB cases (47% versus 22% in Europe, 73% versus 30% in the USA). These findings were confirmed by analyses of eight studies reporting on the proportions of extrapulmonary TB in comparable populations of zTB and MtTB cases (median 63% versus 22%). Also, disparities of primary sites of extrapulmonary TB between zTB and MtTB were detected. Our findings, based on global data, confirm the widely suggested association between zTB and extrapulmonary disease. Different disability weights for zTB and MtTB should be considered and we recommend separate burden estimates for the two diseases.  相似文献   
4.
Sunflower cultivation is affected seriously by Sclerotinia sclerotiorum (Lib.) de Bary in Iran, particularly north-western areas. Because of economic and environmental harms by chemical control, it is necessary to develop cultivars with adequate genetic resistance for reduction of yield losses. The purpose of this study was to find an effective method of inoculation with S. sclerotiorum under field evaluations. Three stem-inoculation techniques including: 1 – mycelium plug, 2 – oxalic acid solution (OAS) and 3 – infested wheat seeds with Sclerotinia mycelium were employed under field conditions. Four genotypes including Ghalami (local variety in market), Confeta, Allstar and Master were used in this study. The lesion length, lesion width and lesion as up and down leading on the stem from inoculation site were measured after 3, 7, 10 and 14 days of inoculation. The analysis of variance showed significant difference between all employed techniques and incubation days after inoculation. Mycelial plug (MP) inoculation technique produced significantly more developed lesions on the treated stems. In spite of this effect, Master variety demonstrated reasonable resistance reaction against the disease. The progress of disease in wounded treatments was also faster than the non-wounded ones. And, the shortest time to obtain significant differences between varieties was 10?days after inoculation. By comparison of results of lesion length at flowering and seed-filling stages, the more obvious effectiveness of the disease was observed at the second stage. Finally, there were negative correlations between mean temperature and mean lesion length in all three inoculation methods.  相似文献   
5.
General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428–431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state.  相似文献   
6.
7.
8.
Adhesion molecules of the integrin beta1 family are thought to be involved in the malignant progression renal cell carcinoma (RCC). Still, it is not clear how they contribute to this process. Since the hematogenous phase of tumour dissemination is the rate-limiting step in the metastatic process, we explored beta1 integrin alterations on several RCC cell lines (A498, Caki1, KTC26) before and after contacting vascular endothelium in a tumour-endothelium (HUVEC) co-culture assay. Notably, alpha2, alpha3 and alpha5 integrins became down-regulated immediately after the tumour cells attached to HUVEC, followed by re-expression shortly thereafter. Integrin down-regulation on RCC cells was caused by direct contact with endothelial cells, since the isolated endothelial membrane fragments but not the cell culture supernatant contributed to the observed effects. Integrin loss was accompanied by a reduced focal adhesion kinase (FAK) expression, FAK activity and diminished binding of tumour cells to matrix proteins. Furthermore, intracellular signalling proteins RCC cells were altered in the presence of HUVEC membrane fragments, in particular 14-3-3 epsilon, ERK2, PKCdelta, PKCepsilon and RACK1, which are involved in regulating tumour cell motility. We, therefore, speculate that contact of RCC cells with the vascular endothelium converts integrin-dependent adhesion to integrin-independent cell movement. The process of dynamic integrin regulation may be an important part in tumour cell migration strategy, switching the cells from being adhesive to becoming motile and invasive.  相似文献   
9.
Najafabadi HS  Lehmann J  Omidi M 《Gene》2007,387(1-2):150-155
Different organisms use synonymous codons with different preferences. Several measures have been introduced to compute the extent of codon usage bias within a gene or genome, among which the codon adaptation index (CAI) has been shown to be well correlated with mRNA levels of Escherichia coli. In this work an error adaptation index (eAI) is introduced, which estimates the level at which a gene can tolerate the effects of mistranslations. It is shown that the eAI has a strong correlation with CAI, as well as with mRNA levels, which suggests that the codons of highly expressed genes are selected so that mistranslation would have the minimum possible effect on the structure and function of the related proteins.  相似文献   
10.
Development of an accurate protein–DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF–DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号