首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Pyridine and 4-picoline cobalt(II) complexes with 3-hydroxypicolinic acid, [Co(3-OHpic)2(py)2], (2), and [Co(3-OHpic)2(4-pic)2], (3), were prepared, their molecular and crystal structures were determined by X-ray structure analysis and their thermal stability by TGA/DTA methods. Complex 2 appears only as trans isomer and 3 as cis isomer. Based on DFT calculations, the most significant effect on orientation of (un)substituted ligands around cobalt, i.e.cis-trans isomerism, comes from crystal packing. Theoretical calculations show that exchange of methyl group in pyridine does not affect relative stability of one monomer unit, i.e.cis isomer is for about 1 kcal mol−1 more stable than trans isomer. Hydrogen bonds of the O-H···O type are present only as intramolecular ones in the crystal structures of 2 and 3, while intermolecular C-H···O hydrogen bonds and π-π stacking interactions (π-π interactions present only in 3) assemble molecules in 3D architecture. Interactions between two monomer units in crystal packing could be separated and theoretically investigated to calculate interaction energy. In our case, both non-hypothetical models, i.e.trans isomer of 2 and cis isomer of 3, show more favorable interaction energies than hypothetical ones, i.e.cis isomer of 2 and trans isomer of 3, for the same type of interaction.  相似文献   
2.
Cadmium(II) complex with quinaldic acid (quinH), [Cd(quin)2(H2O)2] (1), was prepared by the reaction of cadmium(II) acetate and quinaldic acid in water-ethanol mixture, while another cadmium(II) complex, [Cd(quin)2(DMSO)2] (2), was prepared by the recrystallization of 1 in DMSO. Both complexes were characterized by IR spectroscopy and TGA/DTA methods. The crystal structure of 2 was determined by X-ray structure diffraction analysis. Cadmium(II) ion is octahedrally coordinated by two N,O-bidentate quinaldate ligands in equatorial and by two DMSO molecules in axial positions. Only weak intermolecular C-H···O hydrogen bonds and π-π stacking interactions as packing forces are present in the crystal structure of 2. The theoretical investigations included geometry optimizations of both complexes at DFT level (B3LYP and mPW1PW91 functionals) and calculations of vibrational frequencies. Calculated and experimental IR spectra were compared and characteristic bands assigned. The electronic properties of the complexes were investigated by the NBO analysis. Thermogravimetric studies showed the initial loss of two coordinated water molecules in 1 and of DMSO in 2 and then complete decomposition of quinaldate ligands for both 1 and 2.  相似文献   
3.
Cobalt complexes of 3- and 6-methylpicolinic acid, namely [Co(3-Mepic)3] (1) and [Co(6-Mepic)2(H2O)2] · 2H2O (2) were prepared and characterized by spectroscopic methods (IR, UV-Vis, NMR), their molecular and crystal structures were determined by X-ray crystal structure analysis and their thermal stability by TGA/DTA methods. Square-wave voltammetry showed that on mercury electrode the oxidation of 2 requires higher potential than the oxidation of complex anion [Co(3-Mepic)3], the most probable product of the reduction of 1. The reduction of 1 and the oxidation of 2 depend on the kinetics of electron transfer and the electrode material. X-ray structural analysis revealed octahedral coordination polyhedron in both 1 and 2 and the same N,O-chelated coordination mode for both ligands. 13C, 1H and 15N NMR spectroscopy confirmed that coordination mode of 3-methylpicolinic acid in 1 in DMSO solution. UV-Vis spectrophotometric measurements were used to study the complexation of cobalt with 3- and 6-methylpicolinic acid in aqueous solution and to determine the composition of the formed complexes by Job method of continuous variation. The stoichiometry of the complex with 3-methylpicolinic acid is 2:3, while it is 2:3 and 3:2 for the complex with 6-methylpicolinic acid, indicating the possibility of the formation of more than one complex species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号