首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  21篇
  2018年   2篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
1.
A collagen gene (Dcg1) was characterized in Drosophila melanogaster and shown to encode a peptide related to vertebrate basement membrane type IV collagen chains. To study the function of type IV collagen during Drosophila development, we transformed flies with a partially truncated Dcg1 gene under the control of a heat-shock promotor. This construct induced synthesis of shortened pro- chains which associated with normal ones and thereby caused degradation of the shortened and normal pro- chains through a process called pro-collagen suicide. A large proportion of embryos expressing the transgene developed a phenotype exhibiting absence or partial retraction of the germ band with defects in nerve cord condensation and dorsal closure. Together these results indicated that, during embryogenesis, type IV collagen was an essential guiding factor for cell-matrix interactions in morphogenetic events.  相似文献   
2.
An analysis of the phylogenetic relationships of the 13 orders of Demospongiae, based on 18S and C1, D1 and C2 domains of 28S rRNA (for, respectively, 26 and 32 taxa) has been performed. The class Demospongiae as traditionally defined is not found to be monophyletic. Instead, a clade comprising all demosponges except Homoscleromorpha is well-supported, and we define phylogenetically the name Demospongiae in this more restricted sense to preclude the possibility of drastic alterations of the meaning of Demospongiae in the future, depending on the position of Homoscleromorpha. Within this clade Demospongiae s.s., ceractinomorphs and tetractinomorphs are polyphyletic, implying homoplastic evolution of characters such as reproductive strategies (viviparity vs. oviparity) and skeleton architecture (reticulate vs. radiate). The topology derived from our molecular data provides a basis for proposing a new classification of Demospongiae s.s., and suggests a reverse polarity of some characters, with respect to traditional conceptions: viviparity, presence of monaxon spicules and of spongin appear to be ancestral, whereas oviparity, and presence of tetraxon spicules appear as derived characters.  相似文献   
3.
Because calcareous sponges are triggering renewed interest with respect to basal metazoan evolution, a phylogenetic framework of their internal relationships is needed to clarify the evolutionary history of key morphological characters. Morphological variation was scored at the suprageneric level within Calcispongia, but little phylogenetic information could be retrieved from morphological characters. For the main subdivision of Calcispongia, the analysis of morphological data weakly supports a classification based upon cytological and embryological characters (Calcinea/Calcaronea) rather than the older classification scheme based upon the aquiferous system (Homocoela/Heterocoela). The 18S ribosomal RNA data were then analyzed, both alone and in combination with morphological characters. The monophyly of Calcispongia is highly supported, but the position of this group with respect to other sponge lineages and to eumetazoan taxa is not resolved. The monophyly of both Calcinea and Calcaronea is retrieved, and the data strongly rejected the competing Homocoela/Heterocoela hypothesis. The phylogeny implies that characters of the skeleton architecture are highly homoplastic, as are characters of the aquiferous system. However, axial symmetry seems to be primitive for all Calcispongia, a conclusion that has potentially far-reaching implications for hypotheses of early body plan evolution in Metazoa.  相似文献   
4.
Planar cell polarity (PCP), the alignment of cells within 2D tissue planes, involves a set of core molecular regulators highly conserved between animals and cell types. These include the transmembrane proteins Frizzled (Fz) and VanGogh and the cytoplasmic regulators Dishevelled (Dsh) and Prickle. It is widely accepted that this core forms part of a 'PCP pathway' for signal transduction, which can affect cell morphology through activation of an evolutionary ancient regulatory module involving Rho family GTPases and Myosin II, and/or the JNK kinase cascade. We have re-examined the evidence for interactions between the proposed PCP pathway components, and question the placing of the cell morphology regulators in the same pathway as the PCP core. While Fz and Dsh are clearly involved in both PCP and Rho-based cell morphology regulation, available evidence cannot currently discriminate whether these processes are linked mechanistically by a shared Fz/Dsh population, or pass by two distinct pathways.  相似文献   
5.
Molecular systematics of sponges (Porifera)   总被引:7,自引:0,他引:7  
Borchiellini  C.  Chombard  C.  Lafay  B.  Boury-Esnault  N. 《Hydrobiologia》2000,420(1):15-27
The first application of molecular systematics to sponges was in the 1980s, using allozyme divergence to dis-criminate between conspecific and congeneric sponge populations. Since this time, a fairly large database has been accumulated and, although the first findings seemed to indicate that sponge species were genetically more divergent than those of other marine invertebrates, a recent review of the available dataset indicates that levels of interspecific gene identities in most sponges fall within the normal range found between species of other invertebrates. Nevertheless, some sponge genera have species that are extremely divergent from each other, suggesting a possible polyphyly of these genera. In the 1990s, molecular studies comparing sequences of ribosomal RNA have been used to reappraise the phylogenetic relationships among sponge genera, families, orders and classes. Both the 18S small subunit and the 28S large subunit rRNA genes have been sequenced (41 complete or partial and 75 partial sequences, respectively). Sequences of 18S rRNA show good support for Porifera being true Metazoa, but they are not informative for resolving relationships among genera, families or orders. 28S rRNA domains D1 and D2 appear to be more informative for the terminal nodes and provide resolution for internal topologies in sufficiently closely related species, but the deep nodes between orders or classes cannot be resolved using this molecule. Recently, a more conserved gene, Hsp70, has been used to try to resolve the relationships in the deep nodes. Metazoan monophyly is very well supported. Nevertheless, the divergence between the three classes of Porifera, as well as the divergence between Porifera, Cnidaria and Ctenophora, is not resolved. Research is in progress using other genes such as those of the homeodomain, the tyrosine kinase domain, and those coding for the aggregation factor. For the moment the dataset for these genes is too restricted to resolve the phylogenetic relationships of these phyla. However, whichever the genes, the phylogenies obtained suggest that Porifera could be paraphyletic and that the phylogenetic relationships of most of the families and orders of the Demospongiae have to be reassessed. The Calcarea and Hexactinellida are still to be studied at the molecular level.  相似文献   
6.
Over the past few years, there has been growing interest among the sponge community in the phylogenetic position of the Homoscleromorpha (i.e. within or outside the class Demospongiae). Recent molecular analyses clearly show that the Homoscleromorpha forms a distinct clade separated from the Demospongiae and is composed of two families, Oscarellidae and Plakinidae. Within the currently more widely accepted hypothesis of a monophyletic Porifera, we formally propose here to raise Homoscleromorpha to the class rank (the fourth one). We, therefore, provide a definition and a formal diagnosis. In the supplementary materials, we also present an alternative classification of the Homoscleromorpha, following the PhyloCode.  相似文献   
7.
Sponges are known to possess remarkable reconstitutive and regenerative abilities ranging from common wounding or body part regeneration to more impressive re-building of a functional body from dissociated cells. Among the four sponge classes, Homoscleromorpha is notably the only sponge group to possess morphologically distinct basement membrane and specialized cell-junctions, and is therefore considered to possess true epithelia. The consequence of this peculiar organization is the predominance of epithelial morphogenesis during ontogenesis of these sponges. In this work we reveal the underlying cellular mechanisms used during morphogenesis accompanying ectosome regeneration in the homoscleromorph sponge model: Oscarella lobularis. We identified three main sources of novel exopinacoderm during the processes of its regeneration and the restoration of functional peripheral parts of the aquiferous system in O. lobularis: (1) intact exopinacoderm surrounding the wound surface, (2) the endopinacoderm from peripheral exhalant and inhalant canals, and (3) the intact choanoderm found on the wound surface. The basic morphogenetic processes during regeneration are the spreading and fusion of epithelial sheets that merge into one continuous epithelium. Transdifferentiation of choanocytes into exopinacocytes is also present. Epithelial-mesenchymal transition is absent during regeneration. Moreover, we cannot reveal any other morphologically distinct pluripotent cells. In Oscarella, neither blastema formation nor local dedifferentiation and proliferation have been detected, which is probably due to the high morphogenetic plasticity of the tissue. Regeneration in O. lobularis goes through cell transdifferentiation and through the processes, when lost body parts are replaced by the remodeling of the remaining tissue. Morphogenesis during ectosome regeneration in O. lobularis is correlated with its true epithelial organization. Knowledge of the morphological basis of morphogenesis during Oscarella regeneration could have important implications for our understanding of the diversity and evolution of regeneration mechanisms in metazoans, and is a strong basis for future investigations with molecular-biological approaches.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号