全文获取类型
收费全文 | 179篇 |
免费 | 5篇 |
国内免费 | 1篇 |
专业分类
185篇 |
出版年
2023年 | 2篇 |
2022年 | 5篇 |
2021年 | 6篇 |
2020年 | 1篇 |
2019年 | 5篇 |
2018年 | 8篇 |
2017年 | 5篇 |
2016年 | 4篇 |
2015年 | 9篇 |
2014年 | 10篇 |
2013年 | 11篇 |
2012年 | 14篇 |
2011年 | 11篇 |
2010年 | 12篇 |
2009年 | 10篇 |
2008年 | 8篇 |
2007年 | 9篇 |
2006年 | 8篇 |
2005年 | 2篇 |
2004年 | 2篇 |
2003年 | 5篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 4篇 |
1998年 | 6篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1977年 | 1篇 |
排序方式: 共有185条查询结果,搜索用时 15 毫秒
1.
Mark AJ Roberts Elias August Abdullah Hamadeh Philip K Maini Patrick E McSharry Judith P Armitage Antonis Papachristodoulou 《BMC systems biology》2009,3(1):105-14
Background
Developing methods for understanding the connectivity of signalling pathways is a major challenge in biological research. For this purpose, mathematical models are routinely developed based on experimental observations, which also allow the prediction of the system behaviour under different experimental conditions. Often, however, the same experimental data can be represented by several competing network models. 相似文献2.
大鼠胼胝体内神经肽Y免疫反应阳性纤维的发育 总被引:1,自引:0,他引:1
本实验用免疫组织化学ABC法研究了大鼠胼胝体内神经肽Y免疫反应阳性(NPY-IR)纤维的生后发育。结果发现,许多NPY-IR纤维在大鼠出生时便存在于胼胝体内。NPY-IR胼胝体纤维的密度在生后1周内继续逐渐增高,在第2周内达到最高峰。之后,NPY-IR胼胝体纤维的密度逐渐下降,至第3周末时接近成年时的水平,即仅有少量NPY-IR纤维存在于胼胝体内。这些结果提示在大鼠早期生后发育过程中许多NPY-IR胼胝体纤维是暂时性的,其作用可能与大脑皮质的机能发育有关。 相似文献
3.
Yamazaki S Dudziak D Heidkamp GF Fiorese C Bonito AJ Inaba K Nussenzweig MC Steinman RM 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(10):6923-6933
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy. 相似文献
4.
Rosanne A. Healy Hannah Zurier Gregory Bonito Matthew E. Smith Donald H. Pfister 《Mycorrhiza》2016,26(7):781-792
During a study comparing the ectomycorrhizal root communities in a native forest with those at the Arnold Arboretum in Massachusetts (USA), the European species Tuber borchii was detected on the roots of a native red oak in the arboretum over two successive years. Since T. borchii is an economically important edible truffle native to Europe, we conducted a search of other roots in the arboretum to determine the extent of colonization. We also wanted to determine whether other non-native Tuber species had been inadvertently introduced into this 140-year-old Arboretum because many trees were imported into the site with intact soil and roots prior to the 1921 USDA ban on these horticultural practices in the USA. While T. borchii was not found on other trees, seven other native and exotic Tuber species were detected. Among the North American Tuber species detected from ectomycorrhizae, we also collected ascomata of a previously unknown species described here as Tuber arnoldianum. This new species was found colonizing both native and non-native tree roots. Other ectomycorrhizal taxa that were detected included basidiomycetes in the genera Amanita, Russula, Tomentella, and ascomycetes belonging to Pachyphlodes, Helvella, Genea, and Trichophaea. We clarify the phylogenetic relationships of each of the Tuber species detected in this study, and we discuss their distribution on both native and non-native host trees. 相似文献
5.
6.
First detection of papillomaviruses and polyomaviruses in swimming pool waters: unrecognized recreational water‐related pathogens?
下载免费PDF全文

7.
8.
9.
Gregory Bonito Matthew E. Smith Michael Nowak Rosanne A. Healy Gonzalo Guevara Efren Cázares Akihiko Kinoshita Eduardo R. Nouhra Laura S. Domínguez Leho Tedersoo Claude Murat Yun Wang Baldomero Arroyo Moreno Donald H. Pfister Kazuhide Nara Alessandra Zambonelli James M. Trappe Rytas Vilgalys 《PloS one》2013,8(1)
Truffles have evolved from epigeous (aboveground) ancestors in nearly every major lineage of fleshy fungi. Because accelerated rates of morphological evolution accompany the transition to the truffle form, closely related epigeous ancestors remain unknown for most truffle lineages. This is the case for the quintessential truffle genus Tuber, which includes species with socio-economic importance and esteemed culinary attributes. Ecologically, Tuber spp. form obligate mycorrhizal symbioses with diverse species of plant hosts including pines, oaks, poplars, orchids, and commercially important trees such as hazelnut and pecan. Unfortunately, limited geographic sampling and inconclusive phylogenetic relationships have obscured our understanding of their origin, biogeography, and diversification. To address this problem, we present a global sampling of Tuberaceae based on DNA sequence data from four loci for phylogenetic inference and molecular dating. Our well-resolved Tuberaceae phylogeny shows high levels of regional and continental endemism. We also identify a previously unknown epigeous member of the Tuberaceae – the South American cup-fungus Nothojafnea thaxteri (E.K. Cash) Gamundí. Phylogenetic resolution was further improved through the inclusion of a previously unrecognized Southern hemisphere sister group of the Tuberaceae. This morphologically diverse assemblage of species includes truffle (e.g. Gymnohydnotrya spp.) and non-truffle forms that are endemic to Australia and South America. Southern hemisphere taxa appear to have diverged more recently than the Northern hemisphere lineages. Our analysis of the Tuberaceae suggests that Tuber evolved from an epigeous ancestor. Molecular dating estimates Tuberaceae divergence in the late Jurassic (∼156 million years ago), with subsequent radiations in the Cretaceous and Paleogene. Intra-continental diversification, limited long-distance dispersal, and ecological adaptations help to explain patterns of truffle evolution and biodiversity. 相似文献
10.