首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   9篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
3.
Repeated exposure to elevated levels of glucocorticoids during development can have long‐term detrimental effects on survival and fitness, potentially associated with increased telomere attrition. Nestling birds are regularly handled for ecological research, yet few authors have considered the potential for handling‐induced stress to influence hormonally mediated phenotypic development or bias interpretations of subsequent focal measurements. We experimentally manipulated the handling experience of the semi‐precocial nestlings of European Storm Petrel Hydrobates pelagicus to simulate handling in a typical field study and examined cumulative effects on physiology and condition in late postnatal development. Neither baseline corticosterone (the primary glucocorticoid in birds), telomere length nor body condition varied with the number of handling episodes. The absence of a response could be explained if Storm Petrels did not perceive handling to be stressful or if there is dissociation of the hypothalamic–pituitary–adrenal axis from stressful stimuli in early life. Eliciting a response to a stressor may be maladaptive for cavity‐dwelling young that are unable to escape or defend themselves. Furthermore, avoiding elevated overall glucocorticoid exposure may be particularly important in a long‐lived species, in which accelerated early‐life telomere erosion could impact negatively upon longevity. We propose that the level of colony‐wide disturbance induced by investigator handling of young could be important in underlining species‐specific responses. Storm Petrel nestlings appear unresponsive to investigator handling within the limits of handling in a typical field study and handling at this level should not bias physiological and morphological measurements.  相似文献   
4.
The natural history and pathogenic potential of the recently identified TT virus (TTV) are currently a matter of intensive investigation. In an attempt to shed some light on these issues, nasal and blood specimens of 1- to 24-month-old children hospitalized with a clinical diagnosis of acute respiratory disease (ARD) were examined for the presence, load, and genetic characteristics of TTV. The results have indicated that at least in young children, the respiratory tract not only represents a route by which abundant TTV can be shed into the environment but also may be a site of primary infection and continual replication. Although we found no compelling evidence that TTV was the direct cause of ARD in some of the children studied, the average loads of TTV were considerably higher in patients with bronchopneumonia (BP) than in those with milder ARD, raising interesting questions about the pathophysiological significance of TTV at this site. Furthermore, group 4 TTV was detected almost exclusively in children with BP.  相似文献   
5.
TT virus (TTV) produces chronic plasma viremia in around 90% of healthy individuals of all ages and has, therefore, been proposed as a commensal human virus. We recently demonstrated that in children hospitalized for acute respiratory diseases high TTV loads were associated with severe forms of disease. Here, we report that in such children TTV loads showed an inverse correlation with the percentage of circulating total T and helper T cells and a direct correlation with the percentage of B cells. Thus, florid TTV replication might contribute to lymphocyte imbalances and, possibly, immunosuppressive effects, thus resembling related animal viruses.  相似文献   
6.
Telomeres have emerged as important biomarkers of health and senescence as they predict chances of survival in various species. Tropical birds live in more benign environments with lower extrinsic mortality and higher juvenile and adult survival than temperate birds. Therefore, telomere biology may play a more important role in tropical compared to temperate birds. We measured mean telomere length of male stonechats (Saxicola spp.) at four age classes from tropical African and temperate European breeding regions. Tropical and temperate stonechats had similarly long telomeres as nestlings. However, while in tropical stonechats pre‐breeding first‐years had longer telomeres than nestlings, in temperate stonechats pre‐breeding first‐years had shorter telomeres than nestlings. During their first breeding season, telomere length was again similar between tropical and temperate stonechats. These patterns may indicate differential survival of high‐quality juveniles in tropical environments. Alternatively, more favorable environmental conditions, that is, extended parental care, may enable tropical juveniles to minimize telomere shortening. As suggested by previous studies, our results imply that variation in life history and life span may be reflected in different patterns of telomere shortening rather than telomere length. Our data provide first evidence that distinct selective pressures in tropical and temperate environments may be reflected in diverging patterns of telomere loss in birds.  相似文献   
7.
Although basic mechanisms of bronchial hyper-responsiveness (BHR) are still incompletely understood, inflammation of airways is likely to play a fundamental role in modulating BHR in patients with asthma. The involvement of several inflammatory cells (eosinophils, mast cells, lymphocytes, neutrophils, macrophages and platelets) and of bioactive mediators secreted by these cells in the pathogenesis of asthma is well documented. Sodium cromoglycate and nedocromil sodium are two pharmacological agents which have anti-allergic and anti-inflammatory properties. Their clinical effectiveness in mild to moderate asthma, and the capacity to reduce BHR under different natural and experimental conditions, make them valuable drugs for maintenance therapy in patients with asthma.  相似文献   
8.
Responses to environmental variability sheds light on how individuals are able to survive in a particular habitat and provides an indication of the scope and limits of its niche. To understand whether climate has a direct impact on activity, and determine whether vervet monkeys have the behavioral flexibility to respond to environmental change, we examined whether the amount of time spent resting and feeding in the nonmating and mating seasons were predicted by the thermal and energetic constraints of ambient temperature. Our results show that high temperatures during the nonmating season were associated with an increase in time spent resting, at the expense of feeding. Cold temperatures during the nonmating season were associated with an increase in time spent feeding, at the expense of resting. In contrast, both feeding and resting time during the mating season were independent of temperature, suggesting that animals were not adjusting their activity in relation to temperature during this period. Our data indicate that climate has a direct effect on animal activity, and that animals may be thermally and energetically compromised in the mating season. Our study animals appear to have the behavioral flexibility to tolerate current environmental variability. However, future climate change scenarios predict that the time an animal has available for behaviors critical for survival will be constrained by temperature. Further investigations, aimed at determining the degree of behavioral and physiological flexibility displayed by primates, are needed if we are to fully understand the consequences of environmental change on their distribution and survival. Am J Phys Anthropol 154:357–364, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
9.
Early-life adversity is associated with poorer health and survival in adulthood in humans and other animals. One pathway by which early-life environmental stressors could affect the adult phenotype is via effects on telomere dynamics. Several studies have shown that early-life adversity is associated with relatively short telomeres, but these are often cross-sectional and usually correlational in design. Here, we present a novel experimental system for studying the relationship between early-life adversity and telomere dynamics using a wild bird, the European starling (Sturnus vulgaris). We used cross-fostering to experimentally assign sibling chicks to either small or large broods for twelve days of the growth period. We measured telomere length in red blood cells using quantitative PCR near the beginning of the experimental manipulation (4 days old), at the end of the experimental manipulation (15 days old), and once the birds were independent (55 days old). Being in a larger brood slowed growth and retarded wing development and the timing of fledging. We found no evidence that overall brood size affected telomere dynamics. However, the greater the number of competitors above the focal bird in the within-brood size hierarchy, the greater was the telomere loss during the period of the experimental manipulation. The number of competitors below the focal in the hierarchy had no effect. The effect of heavier competitors was still evident when we controlled for the weight of the focal bird at the end of the manipulation, suggesting it was not due to retarded growth per se. Moreover, the impact of early competition on telomeres was still evident at independence, suggesting persistence beyond early life. Our study provides experimental support for the hypothesis that social stress, in this case induced by the presence of a greater number of dominant competitors, accelerates the rate of telomere loss.  相似文献   
10.
Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号