首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2014年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.  相似文献   
2.
3.
Akt decreases lymphocyte apoptosis and improves survival in sepsis   总被引:4,自引:0,他引:4  
Sepsis induces extensive death of lymphocytes that may contribute to the immunosuppression and mortality of the disorder. The serine/threonine kinase Akt is a key regulator of cell proliferation and death. The purpose of this study was to determine whether overexpression of Akt would prevent lymphocyte apoptosis and improve survival in sepsis. In addition, given the important role of Akt in cell signaling, T cell Th1 and Th2 cytokine production was determined. Mice that overexpress a constitutively active Akt in lymphocytes were made septic, and survival was recorded. Lymphocyte apoptosis and cytokine production were determined at 24 h after surgery. Mice with overexpression of Akt had a marked improvement in survival compared with wild-type littermates, i.e., 94 and 47% survival, respectively, p < 0.01. In wild-type littermates, sepsis caused a marked decrease in IFN-gamma production, while increasing IL-4 production >2-fold. In contrast, T cells from Akt transgenic mice had an elevated production of IFN-gamma at baseline that was maintained during sepsis, while IL-4 had little change. Akt overexpression also decreased sepsis-induced lymphocyte apoptosis via a non-Bcl-2 mechanism. In conclusion, Akt overexpression in lymphocytes prevents sepsis-induced apoptosis, causes a Th1 cytokine propensity, and improves survival. Findings from this study strengthen the concept that a major defect in sepsis is impairment of the adaptive immune system, and suggest that strategies to prevent lymphocyte apoptosis represent a potential important new therapy.  相似文献   
4.
5.
We have investigated the role of the mitogen-activated protein kinase (MAPK) pathway in the differentiation of CD4+ and CD8+ T cells by looking specifically at the effects of inhibitors of MAPK-activating enzyme, MAPK/extracellular signal-related kinase (ERK) kinase (MEK), during the positive selection step from double-positive to single-positive (SP) thymocytes. Using a variety of transgenic/knockout mouse strain combinations that fail to differentiate individual lineages of SP thymocytes together with genetically engineered F(ab')2 reagents that induce maturation preferentially to either the CD4 or CD8 subpopulations, we show that induction of CD4 differentiation cells is highly sensitive to levels of MEK inhibition that have no effect on CD8 maturation. In addition, the presence of MEK inhibitor is able to modify signals that normally induce CD4 differentiation to instead promote CD8 differentiation. Finally, we show that continuous culture in the presence of inhibitor interferes with TCR up-regulation in SP thymocytes, suggesting that MAPK signaling may be involved in final maturation steps for both lineages. These data indicate that there is discrimination in the biochemical pathways that are necessary to specify CD4 and CD8 lineage commitment and can reconcile previously conflicting reports on the influence of MAPK activation in commitment and maturation of thymocytes.  相似文献   
6.
7.
N-Methyl-d-aspartate receptors (NMDARs) are ligand-gated ion channels that play an important role in neuronal development, plasticity, and excitotoxicity. NMDAR antagonists are neuroprotective in animal models of neuronal diseases, and the NMDAR open-channel blocker memantine is used to treat Alzheimer''s disease. In view of the clinical application of these pharmaceuticals and the reported expression of NMDARs in immune cells, we analyzed the drug''s effects on T-cell function. NMDAR antagonists inhibited antigen-specific T-cell proliferation and cytotoxicity of T cells and the migration of the cells toward chemokines. These activities correlated with a reduction in T-cell receptor (TCR)-induced Ca2+ mobilization and nuclear localization of NFATc1, and they attenuated the activation of Erk1/2 and Akt. In the presence of antagonists, Th1 effector cells produced less interleukin-2 (IL-2) and gamma interferon (IFN-γ), whereas Th2 cells produced more IL-10 and IL-13. However, in NMDAR knockout mice, the presumptive expression of functional NMDARs in wild-type T cells was inconclusive. Instead, inhibition of NMDAR antagonists on the conductivity of Kv1.3 and KCa3.1 potassium channels was found. Hence, NMDAR antagonists are potent immunosuppressants with therapeutic potential in the treatment of immune diseases, but their effects on T cells have to be considered in that Kv1.3 and KCa3.1 channels are their major effectors.  相似文献   
8.
Protein kinase B (PKB), a serine threonine kinase is critically involved in cellular proliferation and survival. To characterize its role in T cell development in vivo, we have analyzed transgenic mice that express a membrane-targeted constitutively active version of PKB (myr PKB) in thymocytes and peripheral T cells. We report that myr PKB renders proliferative responses of thymocytes more sensitive to TCR signals by increased and sustained activation of Src kinase Lck and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. In addition, the proliferative response of myr PKB T cells is relatively independent of calcium mobilization and calcineurin activity. We also find that myr PKB enhances phosphorylation of glycogen synthase kinase 3, a negative regulator of NFAT and T cell activation, and the recruitment of the adapter protein Cbl-c. Interestingly, we demonstrate that upon TCR/CD3 stimulation of wild-type T cells PKB is translocated into lipid rafts, adding a new role for PKB in TCR-initiated signalosome formation in T cell activation. Localization of transgenic PKB in lipid rafts could contribute to the higher TCR sensitivity of myr PKB thymocytes which is reflected in an increase in positive selection toward the CD4 lineage and variable effects on negative selection depending on the model system analyzed. Thus, our observations clearly indicate a cross-talk between PKB and important signaling molecules downstream of TCR that modulate the thresholds of thymocyte selection and T cell activation.  相似文献   
9.
CD4+CD8+ thymocytes are either positively selected and subsequently mature to CD4 single positive (SP) or CD8 SP T cells, or they die by apoptosis due to neglect or negative selection. This clonal selection is essential for establishing a functional self-restricted T cell repertoire. Intracellular signals through the three known mitogen-activated protein (MAP) kinase pathways have been shown to selectively guide positive or negative selection. Whereas the c-Jun N-terminal kinase and p38 MAP kinase regulate negative selection of thymocytes, the extracellular signal-regulated kinase (ERK) pathway is required for positive selection and T cell lineage commitment. In this paper, we show that the MAP/ERK kinase (MEK)-ERK pathway is also involved in negative selection. Thymocytes from newborn TCR transgenic mice were cultured with TCR/CD3epsilon-specific Abs or TCR-specific agonist peptides to induce negative selection. In the presence of the MEK-specific pharmacological inhibitors PD98059 or UO126, cell recovery was enhanced and deletion of DP thymocytes was drastically reduced. Furthermore, development of CD4 SP T cells was blocked, but differentiation of mature CD8 SP T cells proceeded in the presence of agonist peptides when MEK activity was blocked. Thus, our data indicate that the outcome between positively and negatively selecting signals is critically dependent on MEK activity.  相似文献   
10.
Surface-contact-mediated signaling induced by the measles virus (MV) fusion and hemagglutinin glycoproteins is necessary and sufficient to induce T-cell unresponsiveness in vitro and in vivo. To define the intracellular pathways involved, we analyzed interleukin (IL)-2R signaling in primary human T cells and in Kit-225 cells. Unlike IL-2-dependent activation of JAK/STAT pathways, activation of Akt kinase was impaired after MV contact both in vitro and in vivo. MV interference with Akt activation was important for immunosuppression, as expression of a catalytically active Akt prevented negative signaling by the MV glycoproteins. Thus, we show here that MV exploits a novel strategy to interfere with T-cell activation during immunosuppression.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号