首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   4篇
  2023年   1篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
排序方式: 共有29条查询结果,搜索用时 154 毫秒
1.
Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.Cyanobacteria (oxygenic photosynthetic bacteria) are found in nearly every environment on Earth and are major contributors to global carbon and nitrogen fixation (Galloway et al., 2004; Zwirglmaier et al., 2008). They are distinguished among prokaryotes in containing multiple internal thylakoid membranes, the site of photosynthesis, and a large protein compartment, the carboxysome, involved in carbon fixation. Despite these extra features, cyanobacteria can be as small as 0.6 µm in diameter (Raven, 1998).All cyanobacteria with sequenced genomes encode the pathway for the biosynthesis of hydrocarbons, implying an important, although as-yet-undefined, role for these compounds (Lea-Smith et al., 2015). The major forms are C15-C19 alkanes and alkenes, which can be synthesized from fatty acyl-acyl-carrier proteins (ACPs) by one or other of two separate pathways (Fig. 1; Schirmer et al., 2010; Mendez-Perez et al., 2011). The majority of species produce alkanes and alkenes via acyl-ACP reductase (FAR) and aldehyde deformylating oxygenase (FAD; Schirmer et al., 2010; Li et al., 2012; Coates et al., 2014; Lea-Smith et al., 2015). Cyanobacterial species lacking the FAR/FAD pathway synthesize alkenes via olefin synthase (Ols; Mendez-Perez et al., 2011; Coates et al., 2014; Lea-Smith et al., 2015). This suggests that hydrocarbons produced by either pathway serve a similar role in the cell. Homologs of FAR/FAD or Ols are not present in other bacteria or plant and algal species. However, C15-C17 alkanes and alkenes, synthesized by an alternate, uncharacterized pathway, were recently detected in a range of green microalgae, including Chlamydomonas reinhardtii, Chlorella variabilis NC64A, and several Nannochloropsis species (Sorigué et al., 2016). In C. reinhardtii, hydrocarbons were primarily localized to the chloroplast, which originated in evolution from a cyanobacterium that was engulfed by a host organism (Howe et al., 2008). Hydrocarbons may therefore have a similar role in cyanobacteria, some green microalgae species, and possibly a broader range of photosynthetic organisms.Open in a separate windowFigure 1.Hydrocarbon biosynthesis is encoded in all sequenced cyanobacteria. Detailed are the two hydrocarbon biosynthetic pathways, indicated in blue and red, respectively, in cyanobacteria. The number of species encoding the enzymes in each pathway is indicated.Hydrocarbons act as antidesiccants, waterproofing agents, and signaling molecules in insects (Howard and Blomquist, 2005) and prevent water loss, ensure pollen viability, and influence pathogen interactions in plants (Kosma et al., 2009; Bourdenx et al., 2011). However, the function of hydrocarbons in cyanobacteria has not been determined. Characterization of cyanobacterial hydrocarbon biosynthesis pathways has provided the basis for investigating synthetic microbial biofuel systems, which may be a renewable substitute for fossil fuels (Schirmer et al., 2010; Choi and Lee, 2013; Howard et al., 2013). However, secretion of long-chain hydrocarbons from the cell into the medium, which is likely essential for commercially viable production, has not been observed in the absence of a membrane solubilization agent (Schirmer et al., 2010; Tan et al., 2011). Cyanobacterial hydrocarbons also have a significant environmental role. Due to the abundance of cyanobacteria in the environment, hydrocarbon production is considerable, with hundreds of millions of tons released into the ocean per annum following cell death (Lea-Smith et al., 2015). This production may be sufficient to sustain populations of hydrocarbon-degrading bacteria, which can then play an important role in consuming anthropogenic oil spills (Lea-Smith et al., 2015).Here, we investigated the cellular location and role of hydrocarbons in both spherical Synechocystis sp. PCC 6803 (Synechocystis) and rod-shaped Synechococcus sp. PCC 7002 (Synechococcus) cells. We developed a model of the cyanobacterial membrane, which indicated that hydrocarbons aggregate in the middle of the lipid bilayer and, when present at levels observed in cells, lead to membrane swelling associated with pools of hydrocarbon. This suggested that alkanes may facilitate membrane curvature. In vivo measurements of Synechococcus thylakoid membrane conformation are consistent with this model.  相似文献   
2.
Bombelli  A.  Gratani  L. 《Photosynthetica》2003,41(4):619-625
Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (P N) and stomatal conductance (g s) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum P N and g s, although P N was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (1) during the drought period (–3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as 1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of 1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus.  相似文献   
3.
Biophotovoltaics has emerged as a promising technology for generating renewable energy because it relies on living organisms as inexpensive, self‐repairing, and readily available catalysts to produce electricity from an abundant resource: sunlight. The efficiency of biophotovoltaic cells, however, has remained significantly lower than that achievable through synthetic materials. Here, a platform is devised to harness the large power densities afforded by miniaturized geometries. To this effect, a soft‐lithography approach is developed for the fabrication of microfluidic biophotovoltaic devices that do not require membranes or mediators. Synechocystis sp. PCC 6803 cells are injected and allowed to settle on the anode, permitting the physical proximity between cells and electrode required for mediator‐free operation. Power densities of above 100 mW m‐2 are demonstrated for a chlorophyll concentration of 100 μM under white light, which is a high value for biophotovoltaic devices without extrinsic supply of additional energy.  相似文献   
4.
Two models have been proposed to explain the interaction of cytochrome c with cardiolipin (CL) vesicles. In one case, an acyl chain of the phospholipid accommodates into a hydrophobic channel of the protein located close the Asn52 residue, whereas the alternative model considers the insertion of the acyl chain in the region of the Met80-containing loop. In an attempt to clarify which proposal offers a more appropriate explanation of cytochrome c–CL binding, we have undertaken a spectroscopic and kinetic study of the wild type and the Asn52Ile mutant of iso-1-cytochrome c from yeast to investigate the interaction of cytochrome c with CL vesicles, considered here a model for the CL-containing mitochondrial membrane. Replacement of Asn52, an invariant residue located in a small helix segment of the protein, may provide data useful to gain novel information on which region of cytochrome c is involved in the binding reaction with CL vesicles. In agreement with our recent results revealing that two distinct transitions take place in the cytochrome c–CL binding reaction, data obtained here support a model in which two (instead of one, as considered so far) adjacent acyl chains of the liposome are inserted, one at each of the hydrophobic sites, into the same cytochrome c molecule to form the cytochrome c–CL complex.  相似文献   
5.
6.
The impact of the length of gemini surfactant spacer on complexation and condensation of calf thymus DNA by cationic mixed phospholipid/gemini liposomes was investigated by monitoring the conformational changes of DNA by circular dichroism and the lipid hydration level by the emission characteristics of the fluorescent probe laurdan included in the lipid bilayer. The length of the spacer was shown to influence, on one hand, the hydration level and the organization of the corresponding liposomes and, on the other, the variation of lipid hydration level and the DNA conformation upon complexation. In fact, in correspondence with the longest spacer we observed more hydrated liposomes, probably organized in domains, a higher extent of dehydration promoted by the addition of DNA, and a minor extent of DNA conformational change. The physicochemical features of lipoplexes were shown to depend on the [cationic headgroup]/[DNA single base] ratio.  相似文献   
7.
Calcitonin is a polypeptidic hormone involved in calcium metabolism in the bone. It belongs to the amyloid protein family, which is characterized by the common propensity to aggregate acquiring a beta-sheet conformation and include proteins associated with important neurodegenerative diseases. Here we show for the first time, to our knowledge, by transmission electron microscopy (TEM) that salmon-calcitonin (sCT) forms annular oligomers similar to those observed for beta-amyloid and alpha-sinuclein (Alzheimer's and Parkinson's diseases). We also investigated the interaction between sCT and model membranes, such as liposomes, with particular attention to the effect induced by lipid "rafts" made of cholesterol and G(M1). We observed, by TEM immunogold labeling of sCT, that protein binding is favored by the presence of rafts. In addition, we found by TEM that sCT oligomers inserted in the membrane have the characteristic pore-like morphology of the amyloid proteins. Circular dichroism experiments revealed an increase in beta-content in sCT secondary structure when the protein was reconstituted in rafts mimicking liposomes. Finally, we showed, by spectrofluorimetry experiments, that the presence of sCT allowed Ca(2+) entry in rafts mimicking liposomes loaded with the Ca(2+)-specific fluorophore Fluo-4. This demonstrates that sCT oligomers have ion-channel activity. Our results are in good agreement with recent electrophysiological studies reporting that sCT forms Ca(2+)-permeable ion channels in planar model membranes. It has been proposed that, beyond the well-known interaction of the monomer with the specific receptor, the formation of Ca(2+) channels due to sCT oligomers could represent an extra source of Ca(2+) entry in osteoblasts. Structural and functional data reported here support this hypothesis.  相似文献   
8.
Evidence is presented that human neutrophils contain catecholamines and several of their metabolites. In vitro, incubation with alpha-methyl-p-tyrosine or pargyline affects intracellular dopamine, norepinephrine and their metabolites, suggesting catecholamine synthesis and degradation by these cells. Reserpine reduces intracellular dopamine and norepinephrine and desipramine reduces intracellular norepinephrine, suggesting the presence of storage and uptake mechanism. In view of the ability of catecholamines to affect neutrophil function, the present results support the hypothesis that autoregulatory adrenergic mechanisms may exist in these cells.  相似文献   
9.
Cheng Q  Liu HT  Bombelli P  Smith A  Slabas AR 《FEBS letters》2004,574(1-3):62-68
The Arabidopsis thalina genome database was searched for homologues of the Candida cloacae fao1 gene which encodes a membrane bound, flavin-containing, hydrogen peroxide generating, long chain alcohol oxidase. This gene has not been isolated from plants or animals. Four putative candidates were found in the database but their function has not been proven. The cDNAs for two of them were cloned by RT-PCR from Arabidopis suspension culture and one of them [AtFAO3] was overexpressed in Escherichia coli and shown to functionally express long chain alcohol oxidase activity. The protein has been solubilised and retains biological activity thereby preparing the way for crystallographic studies. This is the first functional proof identifying a long chain alcohol oxidase in higher plants.  相似文献   
10.
ABSTRACT

Structural traits of the vegetation types and plantations occurring in a protected area within the caldera of Vico Lake (Italy) were analysed. There were significant correlations among structural traits, at leaf and stand level. Leaf area index (LAI) and specific leaf area (SLA) were the most significantly correlated traits. LAI rose according to stand plant density, tree size and SLA; the highest LAI value monitored in the Fagus sylvatica L. forest was justified by the largest tree size (28.9±2.8 m height and 53±15 cm diameter) and the highest SLA (212±23 cm2 g-1). The main traits determining the variations in leaf structure among species were analysed by Principal Component Analysis (PCA). The LAI values were used to realise a map allowing us to delimit high LAI values (4.1–5.0), corresponding to the F. sylvatica forest and to the F. sylvatica forest with the sporadic presence of Quercus cerris L. and Castanea sativa Miller, mean LAI values (classes 3.1–4.0) corresponding to Corylus avellana L. plantations and to the Phragmites australis (Cav.) Trin. vegetation type, low LAI values (classes 2.6–3.0) corresponding to Q. cerris forests and C. sativa plantations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号