首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   52篇
  国内免费   2篇
  634篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2018年   10篇
  2017年   10篇
  2016年   13篇
  2015年   20篇
  2014年   36篇
  2013年   38篇
  2012年   46篇
  2011年   34篇
  2010年   23篇
  2009年   24篇
  2008年   41篇
  2007年   41篇
  2006年   34篇
  2005年   38篇
  2004年   47篇
  2003年   35篇
  2002年   33篇
  2001年   13篇
  2000年   9篇
  1999年   9篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   4篇
  1969年   2篇
  1968年   3篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
  1907年   1篇
排序方式: 共有634条查询结果,搜索用时 15 毫秒
1.
The hydrogenase and formate dehydrogenase levels in Syntrophobacter fumaroxidans and Methanospirillum hungatei were studied in syntrophic propionate-oxidizing cultures and compared to the levels in axenic cultures of both organisms. Cells grown syntrophically were separated from each other by Percoll gradient centrifugation. In S. fumaroxidans both formate dehydrogenase and hydrogenase levels were highest in cells which were grown syntrophically, while the formate-H2 lyase activities were comparable under the conditions tested. In M. hungatei the formate dehydrogenase and formate-H2 lyase levels were highest in cells grown syntrophically, while the hydrogenase levels in syntrophically grown cells were comparable to those in cells grown on formate. Reconstituted syntrophic cultures from axenic cultures immediately resumed syntrophic growth, and the calculated growth rates of these cultures were highest for cells which were inoculated from the axenic S. fumaroxidans cultures that exhibited the highest formate dehydrogenase activities. The results suggest that formate is the preferred electron carrier in syntrophic propionate-oxidizing cocultures of S. fumaroxidans and M. hungatei.  相似文献   
2.
3.
D Choi  H M Kim  H K Yun  J A Park  W T Kim    S H Bok 《Plant physiology》1996,112(1):353-359
The cloning and characterization of genes expressed in plant disease resistance could be an initial step toward understanding the molecular mechanisms of disease resistance. A metallothionein-like gene that is inducible by tobacco mosaic virus and by wounding was cloned in the process of subtractive cloning of disease resistance-response genes in Nicotiana glutinosa. One 530-bp cDNA clone (KC9-10) containing an open reading frame of 81 amino acids was characterized. Genomic Southern blot hybridization with the cDNA probe revealed that tobacco metallothionein-like genes are present in few or in one copy per diploid genome. Northern blot hybridization detected strong induction of a 0.5-kb mRNA by wounding and tobacco mosaic virus infection, but only mild induction was detected when copper was tested as an inducer. Methyl jasmonate, salicylic acid, and ethylene were also tested as possible inducers of this gene, but they had no effect on its expression. The possible role of this gene in wounded and pathogen-stressed plants is discussed.  相似文献   
4.
Summary The unusual amino acid hypusine [N -(4-amino-2-hydroxybutyl)lysine] is a unique component of one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A, old terminology, eIF-4D). It is formed posttranslationally and exclusively in this protein in two consecutive enzymatic reactions, (i) modification of a single lysine residue of the eIF-5A precursor protein by the transfer of the 4-aminobutyl moiety of the polyamine spermidine to its-amino group to form the intermediate, deoxyhypusine [N -(4-aminobutyl)lysine] and (ii) subsequent hydroxylation of this intermediate to form hypusine. The amino acid sequences surrounding the hypusine residue are strictly conserved in all eukaryotic species examined, suggesting the fundamental importance of this amino acid throughout evolution. Hypusine is required for the activity of eIF-5Ain vitro. There is strong evidence that hypusine and eIF-5A are vital for eukaryotic cell proliferation. Inactivation of both of the eIF-5A genes is lethal in yeast and the hypusine modification appears to be a requirement for yeast survival (Schnier et al., 1991 [Mol Cell Biol 11: 3105–3114]; Wöhl et al., 1993 [Mol Gen Genet 241: 305–311]). Furthermore, inhibitors of either of the hypusine biosynthetic enzymes, deoxyhypusine synthase or deoxyhypusine hydroxylase, exert strong anti-proliferative effects in mammalian cells, including many human cancer cell lines. These inhibitors hold potential as a new class of anticancer agents, targeting one specific eukaryotic cellular reaction, hypusine biosynthesis.  相似文献   
5.
The metabolic response to L-lysine of Escherichia coli ATCC 13002, a lysine-histidine double auxotroph, has been examined in a synthetic medium containing sucrose. In shaken cultures largest amounts of extracellular DAP were produced with an initial lysine concentration of 7·5 mg/1 and in static cultures of 2·5 mg/1. Considerably smaller amounts of DAP accumulated under stationary conditions. In cultures shaken for 20 and 43 h there was an overall decrease in the yields of DAP, expressed in terms of cell biomass and of sucrose consumed, as the initial concentration of lysine was increased from 0·75 mg/1 in steps up to 25 mg/1. The regulatory effect of lysine on DAP production was also observed when lysine was supplied to cultures at a constant rate employing diffusion capsules.  相似文献   
6.
Human embryonic stem (hES) cells are usually established and maintained on mouse embryonic fibroblast (MEFs) feeder layers. However, it is desirable to develop human feeder cells because animal feeder cells are associated with risks such as viral infection and/or pathogen transmission. In this study, we attempted to establish new hES cell lines using human uterine endometrial cells (hUECs) to prevent the risks associated with animal feeder cells and for their eventual application in cell-replacement therapy. Inner cell masses (ICMs) of cultured blastocysts were isolated by immunosurgery and then cultured on mitotically inactivated hUEC feeder layers. Cultured ICMs formed colonies by continuous proliferation and were allowed to proliferate continuously for 40, 50, and 55 passages. The established hES cell lines (Miz-hES-14, -15, and -9, respectively) exhibited typical hES cells characteristics, including continuous growth, expression of specific markers, normal karyotypes, and differentiation capacity. The hUEC feeders have the advantage that they can be used for many passages, whereas MEF feeder cells can only be used as feeder cells for a limited number of passages. The hUECs are available to establish and maintain hES cells, and the high expression of embryotrophic factors and extracellular matrices by hUECs may be important to the efficient growth of hES cells. Clinical applications require the establishment and expansion of hES cells under stable xeno-free culture systems.  相似文献   
7.
8.
SUMMARY

Data on the relative abundance, penetration and breeding biology of the freshwater mullet Mugil cephalus and the flathead mullet Mugil cephalus in the freshwater reaches of some Eastern Cape coastal rivers are described. The differences found between the two species indicate that Myxus capensis is more specialized for a catadromous life history in an unstable riverine environment. Evidence showing the importance of the freshwater phase for the latter species is given and the disastrous effects of the erection of barriers to fish movement are stressed.  相似文献   
9.
Fas-associated death domain (FADD) protein is an adapter molecule that bridges the interactions between membrane death receptors and initiator caspases. The death receptors contain an intracellular death domain (DD) which is essential to the transduction of the apoptotic signal. The kinase receptor-interacting protein 1 (RIP1) is crucial to programmed necrosis. The cell type interplay between FADD and RIP1, which mediates both necrosis and NF-κB activation, has been evaluated in other studies, but the mechanism of the interaction of the FADD and RIP1 proteins remain poorly understood. Here, we provided evidence indicating that the DD of human FADD binds to the DD of RIP1 in vitro. We developed a molecular docking model using homology modeling based on the structures of FADD and RIP1. In addition, we found that two structure-based mutants (G109A and R114A) of the FADD DD were able to bind to the RIP1 DD, and two mutations (Q169A and N171A) of FADD DD and four mutations (G595, K596, E620, and D622) of RIP1 DD disrupted the FADD–RIP1 interaction. Six mutations (Q169A, N171A, G595, K596, E620, and D622) lowered the stability of the FADD–RIP1 complex and induced aggregation that structurally destabilized the complex, thus disrupting the interaction.  相似文献   
10.
Cyanoacrylate (CA) is most widely used as a medical and commercial tissue adhesive because of easier wound closure, good cosmetic results and little discomfort. But, CA-based tissue adhesives have some limitations including the release of cytotoxic chemicals during biodegradation. In previous study, we made prepolymerized allyl 2-CA (PACA) based tissue adhesive, resulting in longer chain structure. In this study, we investigated a biocompatibility of PACA as alternative tissue adhesive for medical application, comparing with that of Dermabond® as commercial tissue adhesive. The biocompatibility of PACA was evaluated for short-term (24 hr) and long-term (3 and 7 days) using conventional cytotoxicity (WST, neutral red, LIVE/DEAD and TUNEL) assays, hematoxylin-eosin (H&E) and Masson trichrome (MT) staining. Besides we examined the biochemical changes in cells and DNA induced by PACA and Dermabond® utilizing Raman spectroscopy which could observe the denaturation and conformational changes in protein, as well as disintegration of the DNA/RNA by cell death. In particular, we analyzed Raman spectrum using the multivariate statistical methods including principal component analysis (PCA) and support vector machine (SVM). As a result, PACA and Dermabond® tissue adhesive treated cells and tissues showed no difference of the cell viability values, histological analysis and Raman spectral intensity. Also, the classification analysis by means of PCA-SVM classifier could not discriminate the difference between the PACA and Dermabond® treated cells and DNA. Therefore we suggest that novel PACA might be useful as potential tissue adhesive with effective biocompatibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号