首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2000年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Platelet-activating factor (PAF) is a phospholipid mediator of long-term potentiation, synaptic plasticity and memory formation as well as of the development of brain damage. In brain, PAF is synthesized by two distinct pathways but their relative contribution to its productions, in various physiological and pathological conditions, is not established. We have further investigated on the properties of the two enzymes that catalyze the last step of the de novo or remodeling pathways in rat brain microsomes, PAF-synthesizing phosphocholinetransferase (PAF-PCT) and lysoPAF acetyltransferase (lysoPAF-AT), respectively. The latter enzyme is fully active at M Ca2+ concentration, inhibited by MgATP and activated by phosphorylation. Because the reversibility of the reaction catalyzed by PAF-PCT, its direction depends on the ratio [CDP-choline]/[CMP] which is related to the energy charge of the cell. These and other properties indicate that the de novo pathway should mainly contribute to PAF synthesis for maintaining its basal levels under physiological conditions. The remodeling pathway should be more involved in the production of PAF during ischemia. During reperfusion, the overproduction of PAF should be the result of the concomitant activation of both pathways.  相似文献   
2.
Francescangeli  E.  Lang  D.  Dreyfus  H.  Boila  A.  Freysz  L.  Goracci  G. 《Neurochemical research》1997,22(10):1299-1307
Platelet-Activating Factor (PAF) is a potent lipid mediator involved in physiological and pathological events in the nervous tissue where it can be synthesized by two distinct pathways. The last reaction of the de novo pathway utilizes CDPcholine and alkylacetylglycerol and is catalyzed by a specific phosphocholinetransferase (PAF-PCT) whereas the remodelling pathway ends with the reaction catalyzed by lyso-PAF acetyltransferase (lyso-PAF AcT) utilizing lyso-PAF, a product of phospholipase A2 activity, and acetyl-CoA. The levels of PAF in the nervous tissue are also regulated by PAF acetylhydrolase that inactivates this mediator. We have studied the activities of these enzymes during cell proliferation and differentiation in two experimental models: 1) neuronal and glial primary cell cultures from chick embryo and 2) LA-N-1 neuroblastoma cells induced to differentiate by retinoic acid (RA). In undifferentiated neuronal cells from 8-days chick embryos the activity of PAF-PCT was much higher than that of lyso-PAF AcT but it decreased during the period of cellular proliferation up to the arrest of mitosis (day 1–3). During this period no significant changes of lyso-PAF AcT activity was observed. Both enzyme activities increased during the period of neuronal maturation and the formation of cellular contacts and synaptic-like junctions. The activity of PAF acetylhydrolase was unchanged during the development of the neuronal cultures. PAF-PCT activity did not change during the development of chick embryo glial cultures but lyso-PAF AcT activity increased up to the 12th day. RA treatment of LA-N-1 cell culture in proliferation decreased PAF-PCT activity and had no significant effect on lyso-PAF AcT and PAF acetylhydrolase indicating that the synthesis of PAF by the enzyme catalyzing the last step of the de novo pathway is inhibited when the LA-N-1 cells are induced to differentiate. These data suggest that: 1) in chick embryo primary cultures, both pathways are potentially able to contribute to PAF synthesis during development of neuronal cells particularly when they form synaptic-like junctions whereas, during development of glial cells, only the remodelling pathway might be particularly active on synthesizing PAF; 2) in LA-N-1 neuroblastoma cells PAF-synthesizing enzymes coexist and, when cells start to differentiate the contribution of the de novo pathway to PAF biosynthesis might be reduced.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号