首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   7篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   9篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
In polar regions, melting snow fields can be occupied by striking blooms of chrysophycean algae, which cause yellowish slush during summer. Samples were harvested at King George Island (South Shetland Islands, Maritime Antarctica) and at Spitsbergen (Svalbard archipelago, High Arctic). The populations live in an ecological niche, where water‐logged snow provides a cold and ephemeral ecosystem, possibly securing the survival of psychrophilic populations through the summer. A physiological adaptation to low temperatures was shown by photosynthesis measurements. The analysis of soluble carbohydrates showed the occurrence of glycerol and sugars, which may play a role in protection against intracellular freezing. Although both populations were made of unicells with Ochromonas‐alike morphology, investigation by molecular methods (18S rDNA sequencing) revealed unexpectedly a very close relationship to the mountain‐river dwelling Hydrurus foetidus (Villars) Trevisan. However, macroscopic thalli typical for the latter species were never found in snow, but are known from nearby localities, and harvested samples of snow algae exposed to dryness evolved a similar pervading, ‘fishy’ smell. Moreover, in both habitats tetrahedal zoospores with four elongate spikes were found, similar to what is known from Hydrurus. Our molecular results go along with earlier reports, where chrysophycean sequences of the same taxonomic affiliation were isolated from snow. This points to a distinct group of photoautotrophic, Hydrurus‐related chrysophytes, which are characteristic for long‐lasting, slowly melting snow packs in certain cold regions of the world.  相似文献   
2.
Current models suggest that (i) filamentous bacteria are protected against predation by nanoflagellates, (ii) prey size is positively correlated with prey-predator contact probability, and (iii) contact probability is mainly responsible for size-selective predation by interception-feeding flagellates. We used five strains of filamentous bacteria and one bacterivorous nanoflagellate, Ochromonas sp. strain DS, to test these assumptions. The five strains, including one spirochete and four Betaproteobacteria strains, were isolated by the filtration-acclimatization method. All five strains possess flexible cells, but they differ in average cell length, which ranged from 4.5 to 13.7 micro m. High-resolution video microscopy was used to measure contact, capture, and ingestion rates, as well as selectivity of the flagellate feeding. Growth and feeding experiments with satiating and nonsatiating food conditions, as well as experiments including alternative well-edible prey, were performed. In contrast to predictions by current models, the flagellate successfully consumed all the tested filamentous strains. The ingestion rate was negatively correlated with bacterial length. On the other hand, the lengths of the filamentous bacteria were not positively correlated to the contact rate and capture rate but were negatively correlated to ingestion efficiency. In experiments including alternative nonfilamentous prey, the flagellates showed negative selection for filamentous bacteria, which was independent of food concentration and is interpreted as a passive selection. Our observations indicate that (i) size alone is not sufficient to define a refuge for filamentous bacteria from nanoflagellate predation and (ii) for the investigated filamentous bacteria, prey-predator contact probability could be more influenced by factors other than the prey size.  相似文献   
3.
The masking of bacteria by abundant microparticles of the clay and silt fraction and cell losses due to sonication hampered direct enumeration of bacteria in sediments dominated by fine sediments. These problems can be circumvented by dissolving silicate fine particles using hydrofluoric acid and subsequent staining of bacteria by DTAF. The developed disintegration method partly replaces mechanical separation of bacteria from sediment particles by chemical disintegration of the silicates. Recovery efficiency ranged from 90% to 111% for different clays and clay-dominated sediments. Especially for the analysis of fine sediments and clays, this method circumvents both strong dilution of the sediment sample and harsh sonication. The method can also therefore be used in sediments where particle abundance is several orders of magnitude higher than bacterial abundance and simple dilution would not suffice in reliably counting bacteria.  相似文献   
4.
5.
Here we introduce a method for quantitative analysis of planktonic protists and microalgae from preserved field samples combining morphological and small-subunit (SSU) rRNA gene sequence analysis. We linked a microscopic screening with PCR of single cells using field samples preserved with Lugol's iodine solution. Cells possessing a rigid cell wall were incubated with Viscozyme and subsequently with proteinase K for cell disruption; this was unnecessary for fragile cells. The addition of sodium thiosulfate to the PCR tube considerably decreased the inhibiting effect of the fixative (iodine) on the PCR and thus allowed for successful single-cell PCR even of long DNA fragments (up to as many as 3,000 base pairs). We further applied the protocol to investigate the dominant SSU rRNA genotypes in distinct flagellate morphospecies originating from different samples. We hypothesized that despite the morphological similarity, protist morphospecies in different habitats or sampled during different seasons are represented by different genotypes. Our results indicate species-specific differences: the two species Ochromonas sp. and Dinobryon divergens were represented by several different genotypes each, and for the latter species, the dominating genotype differed with habitat. In contrast, Dinobryon pediforme, Dinobryon bavaricum, and Synura sphagnicola were exclusively represented by a single genotype each, and the respective genotype was the same in different samples. In summary, our results highlight the significance of molecular variation within protist morphospecies.  相似文献   
6.
7.
The chrysophyte genera Poterioochromonas and Ochromonas andtheir heterotrophic analogons, i.e. the ‘Spumella-like’flagellates, account for a significant and often dominatingfraction of the pelagic nanoplankton. Even though several osmotrophicallyand autotrophically grown strains of Ochromonas and Poterioochromonasare assumed to produce toxins, the potential toxicity has beeninvestigated neither for its association with bacterivorousnutrition nor within the related exclusively heterotrophic ‘Spumella-like’flagellates. We investigated the toxic potential of severalflagellate strains using cultures of flagellates, cell extractsand filtrate of flagellate cultures. The effect on potentialpredators was exemplarily tested for the cladoceran Daphniamagna and the rotifer Platyias sp. All tested heterotrophicand mixotrophic flagellate strains were toxic to zooplanktonat abundances exceeding 104 flagellates mL–1. For therotifers, survival on any of the flagellate strains was significantlylower than that in the control treatment (P < 0.001) alreadyafter 24 h. We conclude that (i) ‘Spumella-like’flagellates can be toxic to zooplankton, (ii) all tested flagellates,i.e. heterotrophic and mixotrophic flagellates, feeding phagotrophicallycan be toxic to zooplankton and (iii) sublethal effects maybe observed at typical field abundances, even though acute toxicityseems to be restricted to flagellate abundances observed onlyat peak events.  相似文献   
8.
The possible existence of endemism among microorganisms resulting from and preserved by geographic isolation is one of the most controversial topics in microbial ecology. We isolated 31 strains of “Spumella-like” flagellates from remote sampling sites from all continents, including Antarctica. These and another 23 isolates from a former study were characterized morphologically and by small-subunit rRNA gene sequence analysis and tested for the maximum temperature tolerance. Only a minority of the Spumella morpho- and phylotypes from the geographically isolated Antarctic continent follow the worldwide trend of a linear correlation between ambient (air) temperature during strain isolation and heat tolerance of the isolates. A high percentage of the Antarctic isolates, but none of the isolates from locations on all other continents, were obligate psychrophilic, although some of the latter were isolated at low ambient temperatures. The drastic deviation of Antarctic representatives of Spumella from the global trend of temperature adaptation of this morphospecies provides strong evidence for geographic transport restriction of a microorganism; i.e., Antarctic protistan communities are less influenced by transport of protists to and from the Antarctic continent than by local adaptation, a subtle form of endemism.  相似文献   
9.
With the discovery of a high molecular diversity of protists, a discrepancy between morphological and molecular species richness estimates became apparent. Solving the current concerns requires a comparative analysis of different sequences combined with morphological analyses of single cells originating from preserved field samples. We refined a single‐cell PCR (SC‐PCR) protocol for analyzing cells from field samples preserved with Lugol’s iodine solution. We linked microscopic screening with multiplex PCR targeting the SSU rDNA, internal transcribed spacer 1 (ITS1), 5.8S rDNA, internal transcribed spacer 2 (ITS2), and the mitochondrial cytochrome oxidase 1 (CO1) in a single PCR reaction. Using this method, we investigated the intraspecific molecular variation in Dinobryon populations originating from two lakes in the Salzkammergut area of Austria. All investigated genetic markers showed two separated clusters within the investigated populations of Dinobryon divergens O. E. Imhof, indicating a reproductive isolation of the two coexisting populations. Based on these findings, we describe a lineage, which is morphologically similar to D. divergens but, based on the molecular data, is reproductively isolated.  相似文献   
10.
Factors shaping community patterns of microorganisms are controversially discussed. Physical and chemical factors certainly limit the survival of individual taxa and maintenance of diversity. In recent years, a contribution of geographic distance and dispersal barriers to distribution patterns of protists and bacteria has been demonstrated. Organismic interactions such as competition, predation and mutualism further modify community structure and maintenance of distinct taxa. Here, we address the relative importance of these different factors in shaping protists and bacterial communities on a European scale using high-throughput sequencing data obtained from lentic freshwater ecosystems. We show that community patterns of protists are similar to those of bacteria. Our results indicate that cross-domain organismic factors are important variables with a higher influence on protists as compared with bacteria. Abiotic physical and chemical factors also contributed significantly to community patterns. The contribution of these latter factors was higher for bacteria, which may reflect a stronger biogeochemical coupling. The contribution of geographical distance was similar for both microbial groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号