首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   12篇
  国内免费   1篇
  2022年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   7篇
  2011年   1篇
  2010年   8篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   11篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
1.
2.
Chaperonin GroEL, consisting of two seven-subunit rings stacked back-to-back, is disassembled by interaction of 4, 4'-dithiodipyridine (DTP) with Cys(458) located close to the intersubunit contacts within and between the rings. The thiol group of Cys(458) is inaccessible to the probe being buried into the pocket locked by segment Asn(475)-Asn(487). Flexibility of this segment is proposed to induce the "open" state of the pocket and accommodate the bulky probe inside so that the consequential irreversible shifts in the pocket constituents disassemble GroEL. This scheme is supported by the finding that DTP-induced disassembly of GroEL is facilitated by ATP, which specifically stimulates a local shift of the segment Asn(475)-Asn(487) into solution.  相似文献   
3.
New prospects in studying the bacterial signal recognition particle pathway   总被引:4,自引:0,他引:4  
In vivo and in vitro studies have suggested that the bacterial version of the mammalian signal recognition particle (SRP) system plays an essential and selective role in protein biogenesis. The bacterial SRP system consists of at least two proteins and an RNA molecule (termed Ffh, FtsY and 4.5S RNA, respectively, in Escherichia coli). Recent evidence suggests that other putative bacterial-specific SRP components may also exist. In vitro experiments confirmed the expected basic features of the bacterial SRP system by demonstrating interactions among the SRP components themselves, between them and ribosomes, ribosome-linked hydrophobic nascent polypeptides or inner membranes. The availability of a conserved (and essential) bacterial SRP version has facilitated the implementation of powerful genetic and biochemical approaches for studying the cascade of events during the SRP-mediated targeting process in vivo and in vitro as well as the three-dimensional structures and the properties of each SRP component and complex.  相似文献   
4.
Elevated levels of interleukin-1 (IL-1) have been shown to amplify the inflammatory response against periodontopathogenic bacteria. In humans, polymorphisms in the IL1A and IL1B genes are the most well-studied genetic polymorphisms associated with periodontal disease (PD). In contrast to human, there is a lack of knowledge on the genetic basis of canine PD. A case–control study was conducted in which a molecular analysis of dog IL1A and IL1B genes was performed. Of the eight genetic variants identified, seven in IL1A gene and one in IL1B gene, IL1A/1_g.388A >C and IL1A/1_g.521T >A showed statistically significant differences between groups (adjusted OR (95% CI): 0.15 (0.03–0.76), P= 0.022; 5.76 (1.03–32.1), P= 0.046, respectively). It suggests that in the studied population the IL1A/1_g.388C allele is associated with a decreased PD risk, whereas the IL1A/1_g.521A allele can confer an increased risk. Additionally, the IL1A/2_g.515G >T variation resulted in a change of amino acid, i.e. glycine to valine. In silico analysis suggests that this change can alter protein structure and function, predicting it to be deleterious or damaging. This work suggests that IL1 genetic variants may be important in PD susceptibility in canines.  相似文献   
5.

Background

The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene.

Results

Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo.

Conclusions

Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
  相似文献   
6.
The main function of the chaperone GroEL is to prevent nonspecific association of nonnative protein chains and provide their correct folding. In the present work, the renaturation kinetics of three globular proteins (human alpha-lactalbumin, bovine carbonic anhydrase, and yeast phosphoglycerate kinase) in the presence of different molar excess of GroEL (up to 10-fold) was studied. It was shown that the formation of the native structure during the refolding of these proteins is retarded with an increase in GroEL molar excess due to the interaction of kinetic protein intermediates with the chaperone. Mg(2+)-ATP and Mg(2+)-ADP weaken this interaction and decrease the retarding effect of GroEL on the protein refolding kinetics. The theoretical modeling of protein folding in the presence of GroEL showed that the experimentally observed linear increase in the protein refolding half-time with increasing molar excess of GroEL must occur only when the protein adopts its native structure outside of GroEL (i.e. in the free state), while the refolding of the protein in the complex with GroEL is inhibited. The dissociation constants of GroEL complexed with the kinetic intermediates of the proteins studied were evaluated, and a simple mechanism of the functioning of GroEL as a molecular chaperone was proposed.  相似文献   
7.
Abstract: Red‐rumped agoutis (Dasyprocta leporina) are important seed dispersers/predators of Neotropical large‐seeded plants. Several species of seeds cached by agoutis have an edible reward, in contrast to temperate rodent‐dispersed diaspores. The quick meal hypothesis states that the presence of a reward such as edible pulp will enhance the efficiency of rodents as seed disperses by satiating the animal and, consequently, reducing seed predation and enhancing hoarding. In this study, this hypothesis was tested using as the reference system the pulp and seeds of Hymenaea courbaril. Seeds with and without pulp were offered to agoutis and the behaviour of each individual was recorded. Since the probability of predation and hoarding were complementary, we used the probability of predation. The proportion of agoutis that preyed on at least one seed was similar for seeds with (42.8% of individuals) and without (40.0% of individuals) pulp. In agoutis that preyed upon at least one seed, the probability that they killed a seed did not differ between seeds with (0.17 ± 0.03) and without (0.20 ± 0.08) pulp. Hence, these results do not support the ‘quick meal hypothesis’.  相似文献   
8.
Abstract In several plants, extrafloral nectaries (EFN) are located close to the reproductive structures, suggesting that ants may act as a defence against specialized seed predators that overcome chemical defences. Alternatively, ants may also deter herbivores in a generalized manner, thereby protecting the whole plant. In this work, we examined the relationship between the chemically protected weed Crotalaria pallida Ait. (Leguminosae) that bears EFN, its specialized seed predator, the larvae of the arctiid moth Utetheisa ornatrix L. (Arctiidae) and ants. We tested two hypotheses related to the type of deterrence caused by ants. The Seed Predator Deterrence Hypothesis predicts that ant deterrence is directed primarily towards herbivores that destroy seeds and other reproductive structures, without attacking herbivores on vegetative structures. The General Deterrence Hypothesis states that ants are general in their effects, equally deterring herbivores in vegetative and reproductive structures. Our results supported the predictions of the Seed Predator Deterrence Hypothesis, namely, that (i) ant activity on EFN was related to the vulnerability of reproductive structures to attack by U. ornatrix; (ii) ant patrolling was restricted almost entirely to racemes; (iii) ants removed termites used as baits more frequently on racemes than on leaves; and (iv) U. ornatrix larvae were often expulsed from the racemes. These results indicate that EFN can act as another deterrent mechanism in chemically protected plants by promoting the expulsion of specialist seed predators.  相似文献   
9.

Background  

Both direct and indirect interactions determine molecular recognition of ligands by proteins. Indirect interactions can be defined as effects on recognition controlled from distant sites in the proteins, e.g. by changes in protein conformation and mobility, whereas direct interactions occur in close proximity of the protein's amino acids and the ligand. Molecular recognition is traditionally studied using three-dimensional methods, but with such techniques it is difficult to predict the effects caused by mutational changes of amino acids located far away from the ligand-binding site. We recently developed an approach, proteochemometrics, to the study of molecular recognition that models the chemical effects involved in the recognition of ligands by proteins using statistical sampling and mathematical modelling.  相似文献   
10.
To facilitate folding and assembly of different proteins, chaperonin GroEL requires the presence of its helper protein GroES. Using a photochemical cross-linking approach, we show that GroES and newly synthesized pre-beta-lactamase (pre-beta lac) contact with each other only within the ternary complex with GroEL. Possibly owing to this contact GroES is able to directly influence the pre-beta lac/GroEL interaction. Furthermore, the cross-linking of pre-beta lac to GroES suggests that the binding of the protein ligands to GroEL occurs near the GroES binding site, known to be in the central hole space of GroEL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号