首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Guanosine, a guanine-based purine, is recognized as an extracellular signaling molecule that is released from astrocytes and confers neuroprotective effects in several in vivo and in vitro studies. Astrocytes regulate glucose metabolism, glutamate transport, and defense mechanism against oxidative stress. C6 astroglial cells are widely used as an astrocyte-like cell line to study the astrocytic function and signaling pathways. Our previous studies showed that guanosine modulates the glutamate uptake activity, thus avoiding glutamatergic excitotoxicity and protecting neural cells. The goal of this study was to determine the gliopreventive effects of guanosine against glucose deprivation in vitro in cultured C6 cells. Glucose deprivation induced cytotoxicity, an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and lipid peroxidation as well as affected the metabolism of glutamate, which may impair important astrocytic functions. Guanosine prevented glucose deprivation-induced toxicity in C6 cells by modulating oxidative and nitrosative stress and glial responses, such as the glutamate uptake, the glutamine synthetase activity, and the glutathione levels. Glucose deprivation decreased the level of EAAC1, the main glutamate transporter present in C6 cells. Guanosine also prevented this effect, most likely through PKC, PI3K, p38 MAPK, and ERK signaling pathways. Taken together, these results show that guanosine may represent an important mechanism for protection of glial cells against glucose deprivation. Additionally, this study contributes to a more thorough understanding of the glial- and redox-related protective properties of guanosine in astroglial cells.  相似文献   
2.
Neurochemical Research - Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways....  相似文献   
3.
4.
Resveratrol, a natural polyphenolic compound, has been studied as a neuroprotective molecule. Our group has demonstrated that such effect is closely associated with modulation of glial functionality, but the underlying mechanisms are not fully understood. Because astrocytes actively participate in the brain inflammatory response, and activation of adenosine receptors can attenuate inflammatory processes, the aim of this study was to investigate the role of adenosine receptors as a mechanism for resveratrol glioprotection, particularly regarding to neuroinflammation. Therefore, primary astrocyte cultures were co-incubated with resveratrol and selective antagonists of A1, A2A, and A3 adenosine receptors, as well as with caffeine (a non-selective adenosine receptor antagonist), and then challenged with bacterial inflammogen lipopolysaccharide (LPS). Caffeine and selective adenosine receptor antagonists abolished the anti-inflammatory effect of resveratrol. In accordance with these effects, resveratrol prevented LPS-induced decrease in mRNA levels of adenosine receptors. Resveratrol could also prevent the activation of pro-inflammatory signaling pathways, such as nuclear factor κB (NFκB) and p38 mitogen-activated protein kinase (p38 MAPK) in a mechanism dependent on adenosine receptors. Conversely, trophic factors and protective signaling pathways, including sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and phosphoinositide 3-kinase (PI3K)/Akt were positively modulated by resveratrol in both LPS-stimulated and unstimulated astrocytes, but adenosine receptor antagonism did not abrogate all effects of resveratrol. To our knowledge, our data provide the first evidence that adenosine receptors are involved in the anti-inflammatory activity of resveratrol in astrocytes, thus exerting an important role for resveratrol-mediated glioprotection.  相似文献   
5.

Sulforaphane is a natural compound that presents anti-inflammatory and antioxidant properties, including in the central nervous system (CNS). Astroglial cells are involved in several functions to maintain brain homeostasis, actively participating in the inflammatory response and antioxidant defense systems. We, herein, investigated the potential mechanisms involved in the glioprotective effects of sulforaphane in the C6 astrocyte cell line, when challenged with the inflammogen, lipopolysaccharide (LPS). Sulforaphane prevented the LPS-induced increase in the expression and/or release of pro-inflammatory mediators, possibly due to nuclear factor κB and hypoxia-inducible factor-1α activation. Sulforaphane also modulated the expressions of the Toll-like and adenosine receptors, which often mediate inflammatory processes induced by LPS. Additionally, sulforaphane increased the mRNA levels of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO1), both of which mediate several cytoprotective responses. Sulforaphane also prevented the increase in NADPH oxidase activity and the elevations of superoxide and 3-nitrotyrosine that were stimulated by LPS. In addition, sulforaphane and LPS modulated superoxide dismutase activity and glutathione metabolism. Interestingly, the anti-inflammatory and antioxidant effects of sulforaphane were blocked by HO1 pharmacological inhibition, suggesting its dependence on HO1 activity. Finally, in support of a glioprotective role, sulforaphane prevented the LPS-induced decrease in glutamate uptake, glutamine synthetase activity, and glial-derived neurotrophic factor (GDNF) levels, as well as the augmentations in S100B release and Na+, K+ ATPase activity. To our knowledge, this is the first study that has comprehensively explored the glioprotective effects of sulforaphane on astroglial cells, reinforcing the beneficial effects of sulforaphane on astroglial functionality.

  相似文献   
6.
7.
Guanosine, a guanine‐based purine, is an extracellular signaling molecule that is released from astrocytes and shows neuroprotective effects in several in vivo and in vitro studies. Our group recently showed that guanosine presents antioxidant properties in C6 astroglial cells. The heme oxygenase 1 signaling pathway is associated with protection against oxidative stress. Azide, an inhibitor of the respiratory chain, is frequently used in experimental models to induce oxidative and nitrosative stress. Thus, the goal of this study was to investigate the effect of guanosine on azide‐induced oxidative damage in C6 astroglial cells. Azide treatment of these cells resulted in several detrimental effects, including induction of cytotoxicity and mitochondrial dysfunction, increased levels of reactive oxygen/nitrogen species, inducible nitric oxide synthase expression and NADPH oxidase, decreased glutamate uptake and EAAC1 glutamate transporter expression, decreased glutathione (GSH) levels, and decreased activities of glutamine synthetase (GS), superoxide dismutase and catalase (CAT). The treatment also increased nuclear factor‐κB activation and the release of proinflammatory cytokines tumor necrosis factor α and IL‐1β. Guanosine strongly prevented these effects, protecting glial cells against azide‐induced cytotoxicity and modulating glial, oxidative and inflammatory responses through the activation of the heme oxygenase 1 pathway. These observations reinforce and support the role of guanosine as an antioxidant molecule against oxidative damage.

  相似文献   

8.
Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.  相似文献   
9.
10.
Guanidinoacetate Methyltransferase deficiency is an inborn error of metabolism that results in decreased creatine and increased guanidinoacetate (GAA) levels. Patients present neurological symptoms whose mechanisms are unclear. We investigated the effects of an intrastriatal administration of 10 μM of GAA (0.02 nmol/striatum) on energy metabolism, redox state, inflammation, glutamate homeostasis, and activities/immunocontents of acetylcholinesterase and Na+,K+-ATPase, as well as on memory acquisition. The neuroprotective role of creatine was also investigated. Male Wistar rats were pretreated with creatine (50 mg/kg) or saline for 7 days underwenting stereotactic surgery. Forty-eight hours after surgery, the animals (then sixty-days-old) were divided into groups: Control, GAA, GAA + Creatine, and Creatine. Experiments were performed 30 min after intrastriatal infusion. GAA decreased SDH, complexes II and IV activities, and ATP levels, but had no effect on mitochondrial mass/membrane potential. Creatine totally prevented SDH and complex II, and partially prevented COX and ATP alterations. GAA increased dichlorofluorescein levels and decreased superoxide dismutase and catalase activities. Creatine only prevented catalase and dichlorofluorescein alterations. GAA increased cytokines, nitrites levels and acetylcholinesterase activity, but not its immunocontent. Creatine prevented such effects, except nitrite levels. GAA decreased glutamate uptake, but had no effect on the immunocontent of its transporters. GAA decreased Na+,K+-ATPase activity and increased the immunocontent of its α3 subunit. The performance on the novel object recognition task was also impaired. Creatine partially prevented the changes in glutamate uptake and Na+,K+-ATPase activity, and completely prevented the memory impairment. This study helps to elucidate the protective effects of creatine against the damage caused by GAA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号