首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2010年   3篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
2.
Selection-induced mutations are nonrandom mutations that occur as specific and direct responses to environmental challenge. Examples of selection-induced mutations have been reported both in bacteria and in yeast. I previously showed (Hall 1988) that excisions of the mobile genetic element IS150 from within bglF are selection induced and argued that they occurred because they were potentially advantageous under the selective conditions employed. Mittler and Lenski (Mittler and Lenski 1992) have argued that such excisions are not selection induced but that they occur randomly in nondividing cells. Here I provide further evidence that IS150 excisions are induced by selection and that the excisions are immediately, rather than only potentially, advantageous to the cell. I also provide evidence that excisions, which Mittler and Lenski claim occur randomly in saturated broth cultures, actually occur after samples from those cultures are plated onto selective medium.   相似文献   
3.
The Endo F2gene was overexpressed in E.coli as a fusion protein joined to the maltose-binding protein. MBP-Endo F2was found in a highly enriched state as insoluble, inactive inclusion bodies. Extraction of the inclusion bodies with 20% acetic acid followed by exhaustive dialysis rendered the fusion protein active and soluble. MBP-Endo F2was digested with Factor Xaand purified on Q-Sepharose. The enzyme was homogeneous by SDS-PAGE, and appeared as a single symmetrical peak on HPLC. Analysis of the amino-terminus demonstrated conclusively that recombinant Endo F2was homogeneous and identical to the native enzyme.   相似文献   
4.
In a previous study, six virulent bacteriophages PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5 and CHA_P1 were evaluated for their in vivo efficacy in treating Pseudomonas aeruginosa infections using a mouse model of lung infection. Here, we show that their genomes are closely related to five other Pseudomonas phages and allow a subdivision into two clades, PAK_P1-like and KPP10-like viruses, based on differences in genome size, %GC and genomic contents, as well as number of tRNAs. These two clades are well delineated, with a mean of 86% and 92% of proteins considered homologous within individual clades, and 25% proteins considered homologous between the two clades. By ESI-MS/MS analysis we determined that their virions are composed of at least 25 different proteins and electron microscopy revealed a morphology identical to the hallmark Salmonella phage Felix O1. A search for additional bacteriophage homologs, using profiles of protein families defined from the analysis of the 11 genomes, identified 10 additional candidates infecting hosts from different species. By carrying out a phylogenetic analysis using these 21 genomes we were able to define a new subfamily of viruses, the Felixounavirinae within the Myoviridae family. The new Felixounavirinae subfamily includes three genera: Felixounalikevirus, PAK_P1likevirus and KPP10likevirus. Sequencing genomes of bacteriophages with therapeutic potential increases the quantity of genomic data on closely related bacteriophages, leading to establishment of new taxonomic clades and the development of strategies for analyzing viral genomes as presented in this article.  相似文献   
5.
Affinity ligand HWRGWV has demonstrated the ability to isolate human immunoglobulin G (hIgG) from mammalian cell culture media. The ligand specifically binds hIgG through its Fc portion. This work shows that deglycosylation of hIgG has no influence on its binding to the HWRGWV ligand and the ligand does not compete with Protein A or Protein G in binding hIgG. It is suggested by the mass spectrometry (MS) data and docking simulation that HWRGWV binds to the pFc portion of hIgG and interacts with the amino acids in the loop Ser383–Asn389 (SNGQPEN) located in the CH3 domain. Subsequent modeling has suggested a possible three‐dimensional minimized solution structure for the interaction of hIgG and the HWRGWV ligand. The results support the fact that a peptide as small as a hexamer can have specific interactions with large proteins such as hIgG. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site.  相似文献   
7.
Despite increasing interest in coagulase-negative staphylococci (CoNS), little information is available about their bacteriophages. We isolated and sequenced three novel temperate Siphoviridae phages (StB12, StB27, and StB20) from the CoNS Staphylococcus hominis and S. capitis species. The genome sizes are around 40 kb, and open reading frames (ORFs) are arranged in functional modules encoding lysogeny, DNA metabolism, morphology, and cell lysis. Bioinformatics analysis allowed us to assign a potential function to half of the predicted proteins. Structural elements were further identified by proteomic analysis of phage particles, and DNA-packaging mechanisms were determined. Interestingly, the three phages show identical integration sites within their host genomes. In addition to this experimental characterization, we propose a novel classification based on the analysis of 85 phage and prophage genomes, including 15 originating from CoNS. Our analysis established 9 distinct clusters and revealed close relationships between S. aureus and CoNS phages. Genes involved in DNA metabolism and lysis and potentially in phage-host interaction appear to be widespread, while structural genes tend to be cluster specific. Our findings support the notion of a possible reciprocal exchange of genes between phages originating from S. aureus and CoNS, which may be of crucial importance for pathogenesis in staphylococci.  相似文献   
8.
C Pop  Y R Chen  B Smith  K Bose  B Bobay  A Tripathy  S Franzen  A C Clark 《Biochemistry》2001,40(47):14224-14235
We have investigated the oligomeric properties of procaspase-3 and a mutant that lacks the pro-domain (called pro-less variant). In addition, we have examined the interactions of the 28 amino acid pro-peptide when added in trans to the pro-less variant. By sedimentation equilibrium studies, we have found that procapase-3 is a stable dimer in solution at 25 degrees C and pH 7.2, and we estimate an upper limit for the equilibrium dissociation constant of approximately 50 nM. Considering the expression levels of caspase-3 in Jurkat cells, we predict that procaspase-3 exists as a dimer in vivo. The pro-less variant is also a dimer, with little apparent change in the equilibrium dissociation constant. Thus, in contrast with the long pro-domain caspases, the pro-peptide of caspase-3 does not appear to be involved in dimerization. Results from circular dichroism, fluorescence anisotropy, and FTIR studies demonstrate that the pro-domain interacts weakly with the pro-less variant. The data suggest that the pro-peptide adopts a beta-structure when in contact with the protein, but it is a random coil when free in solution. In addition, when added in trans, the pro-peptide does not inhibit the activity of the mature caspase-3 heterotetramer. On the other hand, the active caspase-3 does not efficiently hydrolyze the pro-domain at the NSVD(9) sequence as occurs when the pro-peptide is in cis to the protease domain. Based on these results, we propose a model for maturation of the procaspase-3 dimer.  相似文献   
9.
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North American clades resolved by phylogenetic analysis of ITS sequences. Western North American species plus A. humilis and A. sanguinea of eastern North America form one clade (A), and the remaining eastern North American Amelanchier make up clade B. Five eastern North American taxa are polymorphic at many of the nucleotide sites where clades A and B have diverged and are thought to be of hybrid origin, with A. humilis or A. sanguinea as one parent and various members of clade B as the other parent. Morphological evidence suggests that A. humilis is one of the parents of one of the polymorphic taxa, a microspecies that we refer to informally as A. "erecta." Sequences of 21 cloned copies of the ITS1- 5.8S gene-ITS2 region from one A. "erecta" individual are identical to A. humilis sequence or to the clade B consensus sequence, or they are apparent recombinants of A. humilis and clade B ITS repeats. Amelanchier "erecta" and another polymorphic taxon are suspected to be relatively old because both grow several hundred kilometers beyond the range of one of their parents. ITS sequence polymorphisms have apparently persisted in these two taxa perhaps because of polyploidy and/or agamospermy (asexual seed production), which are prevalent in the genus.   相似文献   
10.
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号