首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2021年   2篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
排序方式: 共有6条查询结果,搜索用时 140 毫秒
1
1.

This article aims at comparing reference methods for the assessment of cancer risk from exposure to genotoxic carcinogen chemical substances and to ionizing radiation. For chemicals, cancer potency is expressed as a toxicological reference value (TRV) based on the most sensitive type of cancer generally observed in animal experiments of oral or inhalation exposure. A dose–response curve is established by modelling experimental data adjusted to apply to human exposure. This leads to a point of departure from which the TRV is derived as the slope of a linear extrapolation to zero dose. Human lifetime cancer risk can then be assessed as the product of dose by TRV and it is generally considered to be tolerable in a 10–6–10–4 range for the public in a normal situation. Radiation exposure is assessed as an effective dose corresponding to a weighted average of energy deposition in body organs. Cancer risk models were derived from the epidemiological follow-up of atomic bombing survivors. Considering a linear-no-threshold dose-risk relationship and average baseline risks, lifetime nominal risk coefficients were established for 13 types of cancers. Those are adjusted according to the severity of each cancer type and combined into an overall indicator denominated radiation detriment. Exposure to radiation is subject to dose limits proscribing unacceptable health detriment. The differences between chemical and radiological cancer risk assessments are discussed and concern data sources, extrapolation to low doses, definition of dose, considered health effects and level of conservatism. These differences should not be an insuperable impediment to the comparison of TRVs with radiation risk, thus opportunities exist to bring closer the two types of risk assessment.

  相似文献   
2.
Because uranium is a natural element present in the earth’s crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC–MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N-methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.  相似文献   
3.
Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100mSv and/or 0.1mSvmin(-1)) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential.  相似文献   
4.
5.
The aim of this study was to assess the risk of lung cancer death associated with cumulative lung doses from exposure to α-particle emitters, including radon gas, radon short-lived progeny, and long-lived radionuclides, and to external γ rays among French uranium miners. The French "post-55" sub-cohort included 3,377 uranium miners hired from 1956, followed up through the end of 1999, and contributing to 89,405 person-years. Lung doses were calculated with the ICRP Human Respiratory Tract Model (Publication 66) for 3,271 exposed miners. The mean "absorbed lung dose" due to α-particle radiation was 78 mGy, and that due to the contribution from other types of radiation (γ and β-particle radiation) was 56 mGy. Radon short-lived progeny accounted for 97% of the α-particle absorbed dose. Out of the 627 deaths, the cause of death was identified for 97.4%, and 66 cases were due to lung cancer. A significant excess relative risk (ERR) of lung cancer death was associated with the total absorbed lung dose (ERR/Gy = 2.94, 95% CI 0.80, 7.53) and the α-particle absorbed dose (4.48, 95% CI 1.27, 10.89). Assuming a value of 20 for the relative biological effectiveness (RBE) of α particles for lung cancer induction, the ERR/Gy-Eq for the total weighted lung dose was 0.22 (95% CI: 0.06, 0.53).  相似文献   
6.

Introduction

Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake.

Objectives

In a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L?1; duration: 9 months, n = 10). In the present study, our aim was to investigate the dose–effect pattern and identify additional potential biomarkers in urine samples.

Methods

Compared to our previous protocol, we doubled the number of rats per group (n = 20), added additional sampling time points (3 and 6 months) and included several lower doses of natural uranium (doses used: 40, 1.5, 0.15 and 0.015 mg L?1). LC–MS metabolomics was performed on urine samples and statistical analyses were made with SIMCA-P+ and R packages.

Results

The data confirmed our previous results and showed that discrimination was both dose and time related. Uranium exposure was revealed in rats contaminated for 9 months at a dose as low as 0.15 mg L?1. Eleven features, including the confidently identified N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide and 4-hydroxyphenylacetylglycine, discriminated control from contaminated rats with a specificity and a sensitivity ranging from 83 to 96 %, when combined into a composite score.

Conclusion

These findings show promise for the elucidation of underlying radiotoxicologic mechanisms and the design of a diagnostic test to assess exposure in urine, in a dose range experimentally estimated to be above a threshold between 0.015 and 0.15 mg L?1.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号