首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   4篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Coxsackievirus A16 (CA16) infection, which is responsible for hand, foot and mouth disease (HFMD), has become a common health problem in Asia due to the prevalence of the virus. Thus, it is important to understand the pathogenesis of CA16 infection. Viruses that induce endoplasmic reticulum (ER) stress are confronted with the unfolded protein response (UPR), which may lead to apoptotic cell death and influence viral replication. In this study, we found that CA16 infection could induce apoptosis and ER stress in RD cells. Interestingly, apoptosis via the activation of caspase-3, -8 and -9 in the extrinsic or intrinsic apoptotic pathways in RD cells was inhibited by 4-phenyl butyric acid (4PBA), a chemical chaperone that reduces ER stress. These results suggest that CA16 infection leads to ER stress, which in turn results in prolonged ER stress-induced apoptosis. This study provides a new basis for understanding CA16 infection and host responses.  相似文献   
2.
Febrile seizures (FS) are the most common type of convulsive events in infants and young children, but the precise underlying genetic mechanism remains to be explored. To investigate the underlying pathogenic factors in FS and subsequent epilepsy, alterations in gene expression between the two new strains of rats (hyperthermia-prone [HP] vs hyperthermia-resistant [HR]), were investigated by using the Whole Rat Genome Oligo Microarray. This process identified 1,140 differentially expressed genes (DEGs; 602 upregulated and 538 downregulated), which were analyzed to determine significant Gene Ontology (GO) categories, signaling pathways and gene networks. Based on the GO analyses, the modified genes are closely related to various FS pathogenesis factors, including immune and inflammatory responses and ion transport. Certain DEGs identified have not been previously examined in relation to FS pathogenesis. Among these genes is dipeptidyl peptidase 4 (DPP4), a gene closely linked to interleukin 6 (IL-6), which played a key role in the gene network analysis. Furthermore, sitagliptin, a DPP4 inhibitor significantly decreased epileptic discharge in rats, observed via electroencephalogram, suggesting an important role for DPP4 in FS. The effectiveness of sitagliptin in reducing seizure activity may occur through a mechanism that stabilizes cellular Ca2+ homeostasis. In addition, DPP4 expression may be regulated by DNA methylation. The hippocampal gene expression profiles in novel rat models of FS provides a large database of candidate genes and pathways, which will be useful for researchers interested in disorders of neuronal excitability.  相似文献   
3.
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease in the central nervous system (CNS). The NLRP3 inflammasome is considered an important regulator of immunity and inflammation, both of which play a critical role in MS. However, the underlying mechanism of NLRP3 inflammasome activation is not fully understood. Here we identified that the TRPV1 (transient receptor potential vanilloid type 1) channel in microglia, as a Ca2+ influx-regulating channel, played an important role in NLRP3 inflammasome activation. Deletion or pharmacological blockade of TRPV1 inhibited NLRP3 inflammasome activation in microglia in vitro. Further research revealed that TRPV1 channel regulated ATP-induced NLRP3 inflammasome activation through mediating Ca2+ influx and phosphorylation of phosphatase PP2A in microglia. In addition, TRPV1 deletion could alleviate mice experimental autoimmune encephalomyelitis (EAE) and reduce neuroinflammation by inhibiting NLRP3 inflammasome activation. These data suggested that the TRPV1 channel in microglia can regulate NLRP3 inflammasome activation and consequently mediate neuroinflammation. Meanwhile, our study indicated that TRPV1–Ca2+–PP2A pathway may be a novel regulator of NLRP3 inflammasome activation, pointing to TRPV1 as a potential target for CNS inflammatory diseases.Subject terms: Neuroimmunology, Neuroimmunology  相似文献   
4.
TRPV1(transient receptor potential vanilloid 1)是在机体广泛分布的非选择性阳离子通道,能被氢离子、高温以及其它内源性和外源性配体激活.其在外周神经系统中主要参与伤害性高温的感受以及痛觉过敏等生理机制.TRPV1在中枢神经系统中功能的研究进展主要体现在突触传递,体温调节,痛觉的调制和细胞凋亡等方面.TRPV1的激活降低突触前谷氨酸的释放及增强已存在的突触后AMPA受体的作用,从而增强了突触传递效能.外周的TRPV1通过激活能够抑制血管的收缩和生热作用,从而抑制体温的升高,当TRPV1被阻断时就发生体温过高,而TRPV1体温调节的中枢作用机制可能是通过直接作用于体温调节中枢.脑干的痛觉调制环路的激活TRPV1可以引起谷氨酸盐的释放,进而激活突触后I类mGlu受体以及NMDA受体,从而起到镇痛的功能.另外近年发现TRPV1在中枢也参与呕吐、呼吸、心率及血压的调节.  相似文献   
5.
Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA) has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS) purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA) and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA), respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants.  相似文献   
6.
选择12对微卫星标记检测了于2011年采集自元江(红河上游中国江段)5个样点192尾鲤的群体遗传多样性.共检测到201个等位基因,每个位点等位基因2-27个.各群体各位点平均等位基因(NA)12.25-14.67个,平均有效等位基因(NE)8.28-9.73个,平均观察杂合度(Ho)o.7765-0.8037,平均期望杂合度(HE)0.7761-0.8080,平均多态信息含量(PIC)0.7534-0.7843.元江鲤种群192个个体各位点NA、NE、Ho、HE、PIC分别为16.50、11.26、0.7927、0.8049、0.7966,种群遗传多样性水平高.元江鲤群体之间遗传分化小,可作为一个种群管理单元进行管理.增殖放流要防止遗传多样性丧失.  相似文献   
7.
Autophagy is an important homeostatic process for the degradation of cytosolic proteins and organelles and has been reported to play an important role in cellular responses to pathogens and virus replication. However, the role of autophagy in Coxsackievirus A16 (CA16) infection and pathogenesis remains unknown. Here, we demonstrated that CA16 infection enhanced autophagosome formation, resulting in increased extracellular virus production. Moreover, expression of CA16 nonstructural proteins 2C and 3C was sufficient to trigger autophagosome accumulation by blocking the fusion of autophagosomes with lysosomes. Interestingly, we found that Immunity-related GTPase family M (IRGM) was crucial for the activation of CA16 infection-induced autophagy; in turn, reducing IRGM expression suppressed autophagy. Expression of viral protein 2C enhanced IRGM promoter activation, thereby increasing IRGM expression and inducing autophagy. CA16 infection inhibited Akt/mTOR signaling and activated extracellular signal-regulated kinase (ERK) signaling, both of which are necessary for autophagy induction. In summary, CA16 can use autophagy to enhance its own replication. These results raise the possibility of targeting the autophagic pathway for the treatment of hand, foot, and mouth disease (HFMD).  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号