首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   20篇
  2021年   2篇
  2018年   1篇
  2016年   2篇
  2014年   3篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   7篇
  1995年   9篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
Certain characteristics of late noduline gene from pea-Nod6 were investigated as part of works of characterization of higher plant genes taking part in symbiotic nitrogen fixation. The complete 450 b.p. long cDNA was sequenced, it's coding sequence includes the open reading frame. The part of DNA containing the corresponding gene from the genomic clone was also sequenced. The predicted Nod6 amino acid sequence has been analyzed and do not reveal the significant homology with any known protein.  相似文献   
2.
In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it is hypothesized that the Rhizobium Nod factor induces cell division in the root cortex by stimulating the production of flavonoids that function as auxin transport inhibitors. In nodules CHS mRNA is predominantly present in a region at the apex of the nodule consisting of meristematic and cortical cells. These cells are not infected by Rhizobium. Therefore it is postulated that CHS plays a role in nodule development rather than in a defence response. In roots CHS mRNA is located at a similar position as in nodules, suggesting that CHS has the same function in both root and nodule development. When nodules are formed by mutants of Rhizobium leguminosarum bv. viciae that are unable to secrete β(1-2) glucan and to synthesize the O-antigen containing LPS I, CHS genes are also expressed in regions of the nodule that are infected by Rhizobium. It is postulated that the impaired development of nodules formed by these mutants is due to an induction of a plant defence response.  相似文献   
3.
The role of the Rhizobium nod genes in the induction of nodulin gene expression was examined by analyzing nodules formed on vetch roots by bacterial strains containing only the nod region. Introduction of an 11-kb cloned nod region of the R. leguminosarum sym plasmid pRL1JI into sym plasmid-cured rhizobia conferred on the recipient strains the ability to induce nodules in which all nodulin genes were expressed. This proves that from the sym plasmid only the nod region is involved in the induction of nodulin gene expression. A transconjugant of Agrobacterium carrying the same nod region induces nodules in which only early nodulin gene expression is detected. Thus, the nod region is essential for the induction of early nodulin gene expression. In this case, nodule cytology may indicate that a defense response of the plant interferes with the induction of late nodulin gene expression. Indirect evidence is presented that indeed the Rhizobium nod genes are also in some way involved in the induction of the expression of late noduling genes. The combination between histological data and pattern of nodulin gene expression furthermore reveals a correlation between nodule structure and nodulin gene expression. This correlation may aid in speculations about the functions of nodulins.  相似文献   
4.
5.
To identify genes specifically expressed during early stages of actinorhizal nodule development, a cDNA library made from poly(A) RNA from root nodules of Alnus glutinosa was screened differentially with nodule and root cDNA, respectively. Seven nodule-enhanced and four nodule-specific cDNA clones were isolated. By using in situ hybridization, two of the nodule-specific cDNAs were shown to be expressed at the highest levels in infected cells before the onset of nitrogen fixation; one of them, ag12 (A. glutinosa), was examined in detail. Sequencing showed that ag12 codes for a serine protease of the subtilisin (EC 3.4.21.14) family. Subtilisins previously appeared to be limited to microorganisms. However, subtilisin-like serine proteases have recently been found in archaebacteria, fungi, and yeasts as well as in mammals; a plant subtilisin has also been sequenced. In yeast and mammals, subtilases are responsible for processing peptide hormones. A homolog of ag12, ara12, was identified in Arabidopsis; it was expressed in all organs, and its expression levels were highest during silique development. Hence, our study shows that subtilases are also involved in both symbiotic and nonsymbiotic processes in plant development.  相似文献   
6.
7.
Fluorescent proteins, such as green fluorescent protein and red fluorescent protein (DsRED), have become frequently used reporters in plant biology. However, their potential to monitor dynamic gene regulation is limited by their high stability. The recently made DsRED-E5 variant overcame this problem. DsRED-E5 changes its emission spectrum over time from green to red in a concentration independent manner. Therefore, the green to red fluorescence ratio indicates the age of the protein and can be used as a fluorescent timer to monitor dynamics of gene expression. Here, we analyzed the potential of DsRED-E5 as reporter in plant cells. We showed that in cowpea (Vigna unguiculata) mesophyll protoplasts, DsRED-E5 changes its fluorescence in a way similar to animal cells. Moreover, the timing of this shift is suitable to study developmental processes in plants. To test whether DsRed-E5 can be used to monitor gene regulation in plant organs, we placed DsRED-E5 under the control of promoters that are either up- or down-regulated (MtACT4 and LeEXT1 promoters) or constitutively expressed (MtACT2 promoter) during root hair development in Medicago truncatula. Analysis of the fluorescence ratios clearly provided more accurate insight into the timing of promoter activity.  相似文献   
8.
Cultivar Afghanistan peas are resistant to nodulation by many strains of Rhizobium leguminosarum bv. viciae but are nodulated by strain TOM, which carries the host specificity gene nodX. Some strains that lack nodX can inhibit nodulation of cv. Afghanistan by strain TOM. We present evidence that this "competitive nodulation-blocking" (Cnb) phenotype may result from high levels of Nod factors inhibiting nodulation of cv. Afghanistan peas. The TOM nod gene region (including nodX) is cloned on pIJ1095, and strains (including TOM itself) carrying pIJ1095 nodulate cv. Afghanistan peas very poorly but can nodulate other varieties normally. The presence of pIJ1095, which causes increased levels of Nod factor production, correlates with Cnb. Nodulation of cv. Afghanistan by TOM is also inhibited by a cloned nodD gene that increases nod gene expression and Nod factor production. Nodulation of cv. Afghanistan can be stimulated if nodD on pIJ1095 is mutated, thus severely reducing the level of Nod factor produced. Repression of nod gene expression by nolR eliminates the Cnb phenotype and can stimulate nodulation of cv. Afghanistan. Addition of Nod factors to cv. Afghanistan roots strongly inhibits nodulation. The Cnb+ strains and added Nod factors inhibit infection thread initiation by strain TOM. The sym2A allele determines resistance of cv. Afghanistan to nodulation by strains of R. leguminosarum bv. viciae lacking nodX. We tested whether sym2A is involved in Cnb by using a pea line carrying the sym2A region introgressed from cv. Afghanistan; nodulation in the introgressed line was inhibited by Cnb+ strains. Therefore, the sym2A region has an effect on Cnb, although another locus (or loci) may contribute to the stronger Cnb seen in cv. Afghanistan.  相似文献   
9.
Nod factors are signaling molecules secreted by Rhizobium bacteria. These lipo-chitooligosaccharides (LCOs) are required for symbiosis with legumes and can elicit specific responses at subnanomolar concentrations on a compatible host. How plants perceive LCOs is unclear. In this study, using fluorescent Nod factor analogs, we investigated whether sulfated and nonsulfated Nod factors were bound and perceived differently by Medicago truncatula and Vicia sativa root hairs. The bioactivity of three novel sulfated fluorescent LCOs was tested in a root hair deformation assay on M. truncatula, showing bioactivity down to 0.1 to 1 nM. Fluorescence microscopy of plasmolyzed M. truncatula root hairs shows that sulfated fluorescent Nod factors accumulate in the cell wall of root hairs, whereas they are absent from the plasma membrane when applied at 10 nM. When the fluorescent Nod factor distribution in medium surrounding a root was studied, a sharp decrease in fluorescence close to the root hairs was observed, visualizing the remarkable capacity of root hairs to absorb Nod factors from the medium. Fluorescence correlation microscopy was used to study in detail the mobilities of sulfated and nonsulfated fluorescent Nod factors which are biologically active on M. truncatula and V. sativa, respectively. Remarkably, no difference between sulfated and nonsulfated Nod factors was observed: both hardly diffuse and strongly accumulate in root hair cell walls of both M. truncatula and V. sativa. The implications for the mode of Nod factor perception are discussed.  相似文献   
10.
Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号