首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2021年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2010年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
Questing ticks were collected during monthly dragging sessions (March–August 2011) in three provinces of the Liguria region, north-western Italy, to evaluate the species occurrence, spatial distribution and relative abundance. A total of 1,464 specimens were collected in 94 dragging sites. Ixodes ricinus was the most abundant species (81.3 % of collected ticks), followed by Haemaphysalis punctata (10.9 %), Dermacentor marginatus (5.5 %), Ixodes frontalis (1.3 %), and Rhipicephalus spp. (0.9 %). Ixodes frontalis is reported for the first time in Liguria. An aggregation of I. ricinus positive sites was observed in inland areas characterized by dense forests dominated by deciduous trees (Castanetum and Fagetum phytoclimatic zones), especially in the west of the region where the differences in the Normalized Difference Vegetation Index (NDVI) were higher between inland and coastal sites. Negative binomial regression for repeated measures was used to model the associations of NDVI and season with counts of host-seeking I. ricinus nymphs. The NDVI was a good predictor of I. ricinus nymphs abundance, and confirmed its utility in discriminating habitat suitability for this vector in north-western coastal Italy, where dry habitat conditions may limit the distribution of this species.  相似文献   
3.
Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3–5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.  相似文献   
4.
5.
Extrapolating landscape regression models for use in assessing vector-borne disease risk and other applications requires thoughtful evaluation of fundamental model choice issues. To examine implications of such choices, an analysis was conducted to explore the extent to which disparate landscape models agree in their epidemiological and entomological risk predictions when extrapolated to new regions. Agreement between six literature-drawn landscape models was examined by comparing predicted county-level distributions of either Lyme disease or Ixodes scapularis vector using Spearman ranked correlation. AUC analyses and multinomial logistic regression were used to assess the ability of these extrapolated landscape models to predict observed national data. Three models based on measures of vegetation, habitat patch characteristics, and herbaceous landcover emerged as effective predictors of observed disease and vector distribution. An ensemble model containing these three models improved precision and predictive ability over individual models. A priori assessment of qualitative model characteristics effectively identified models that subsequently emerged as better predictors in quantitative analysis. Both a methodology for quantitative model comparison and a checklist for qualitative assessment of candidate models for extrapolation are provided; both tools aim to improve collaboration between those producing models and those interested in applying them to new areas and research questions.  相似文献   
6.

Background

More than 200,000 new cases of leprosy were reported by 105 countries in 2011. The disease is a public health problem in Brazil, particularly within high-burden pockets in the Amazon region where leprosy is hyperendemic among children.

Methodology

We applied geographic information systems and spatial analysis to determine the spatio-temporal pattern of leprosy cases in a hyperendemic municipality of the Brazilian Amazon region (Castanhal). Moreover, we performed active surveillance to collect clinical, epidemiological and serological data of the household contacts of people affected by leprosy and school children in the general population. The occurrence of subclinical infection and overt disease among the evaluated individuals was correlated with the spatio-temporal pattern of leprosy.

Principal Findings

The pattern of leprosy cases showed significant spatio-temporal heterogeneity (p<0.01). Considering 499 mapped cases, we found spatial clusters of high and low detection rates and spatial autocorrelation of individual cases at fine spatio-temporal scales. The relative risk of contracting leprosy in one specific cluster with a high detection rate is almost four times the risk in the areas of low detection rate (RR = 3.86; 95% CI = 2.26–6.59; p<0.0001). Eight new cases were detected among 302 evaluated household contacts: two living in areas of clusters of high detection rate and six in hyperendemic census tracts. Of 188 examined students, 134 (71.3%) lived in hyperendemic areas, 120 (63.8%) were dwelling less than 100 meters of at least one reported leprosy case, 125 (66.5%) showed immunological evidence (positive anti-PGL-I IgM titer) of subclinical infection, and 9 (4.8%) were diagnosed with leprosy (8 within 200 meters of a case living in the same area).

Conclusions/Significance

Spatial analysis provided a better understanding of the high rate of early childhood leprosy transmission in this region. These findings can be applied to guide leprosy control programs to target intervention to high risk areas.  相似文献   
7.
8.
9.
10.
Elevated risk of disease transmission is considered a major cost of sociality, although empirical evidence supporting this idea remains scant. Variation in spatial cohesion and the occurrence of social interactions may have profound implications for patterns of interindividual parasite transmission. We used a social network approach to shed light on the importance of different aspects of group-living (i.e. within-group associations versus physical contact) on patterns of parasitism in a neotropical primate, the brown spider monkey (Ateles hybridus), which exhibits a high degree of fission–fusion subgrouping. We used daily subgroup composition records to create a ‘proximity’ network, and built a separate ‘contact’ network using social interactions involving physical contact. In the proximity network, connectivity between individuals was homogeneous, whereas the contact network highlighted high between-individual variation in the extent to which animals had physical contact with others, which correlated with an individual''s age and sex. The gastrointestinal parasite species richness of highly connected individuals was greater than that of less connected individuals in the contact network, but not in the proximity network. Our findings suggest that among brown spider monkeys, physical contact impacts the spread of several common parasites and supports the idea that pathogen transmission is one cost associated with social contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号