首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   22篇
  359篇
  2023年   4篇
  2022年   7篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   6篇
  2015年   11篇
  2014年   21篇
  2013年   16篇
  2012年   28篇
  2011年   49篇
  2010年   19篇
  2009年   18篇
  2008年   21篇
  2007年   24篇
  2006年   17篇
  2005年   22篇
  2004年   12篇
  2003年   20篇
  2002年   14篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1964年   2篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
1.
Recently an inherited vitamin G deficiency in the pigs presumably based on an autosomal recessive gene was decribed* Homozygotes are in contrast to heterozygotes and normal pigs unable to synthesize ascorbic acid. In an experiment comprising 3 littermate pigs, 2 homozygous and 1 heterozygous for the vitamin C deficiency gene, the influence of ascorbic acid depletion, and repletion on mitogen stimulation of peripheral blood lymphocytes was studied. Ascorbic acid depletion of the vitamin C dependent pigs resulted in a rapid decline in plasma ascorbic acid. Response of lymphocytes to stimular tion with Concanavalin A (Con A) and phytohemagglutinin M (PHA) decreased more slowly reaching a minimum, which coincidedi with the occurrence of the first clinical symptoms of scurvy. Following resupplementation with vitamin C the plasma content of ascorbic acid rapidly returned to normal, while the lymphocyte response to Con A and PHA stimulation only gradually approached the initial values. The repletion with ascorbic acid caused a transitory increase in the response to pokeweed mitogen (PWM) stimulation. The significance of these findings in relation to the cellular immune system in normal pigs is discussed.  相似文献   
2.
The ability to design customized proteins to perform specific tasks is of great interest. We are particularly interested in the design of sensitive and specific small molecule ligand-binding proteins for biotechnological or biomedical applications. Computational methods can narrow down the immense combinatorial space to find the best solution and thus provide starting points for experimental procedures. However, success rates strongly depend on accurate modeling and energetic evaluation. Not only intra- but also intermolecular interactions have to be considered. To address this problem, we developed PocketOptimizer, a modular computational protein design pipeline, that predicts mutations in the binding pockets of proteins to increase affinity for a specific ligand. Its modularity enables users to compare different combinations of force fields, rotamer libraries, and scoring functions. Here, we present a much-improved version––PocketOptimizer 2.0. We implemented a cleaner user interface, an extended architecture with more supported tools, such as force fields and scoring functions, a backbone-dependent rotamer library, as well as different improvements in the underlying algorithms. Version 2.0 was tested against a benchmark of design cases and assessed in comparison to the first version. Our results show how newly implemented features such as the new rotamer library can lead to improved prediction accuracy. Therefore, we believe that PocketOptimizer 2.0, with its many new and improved functionalities, provides a robust and versatile environment for the design of small molecule-binding pockets in proteins. It is widely applicable and extendible due to its modular framework. PocketOptimizer 2.0 can be downloaded at https://github.com/Hoecker-Lab/pocketoptimizer .  相似文献   
3.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
4.

Background

Venous leg ulcers are common, troublesome, and their failure to heal is often related to a heavy bio-burden. Ionized silver has both anti-inflammatory and antimicrobial properties. The ulcer healing properties of the silver releasing foam dressing Biatain Ag has been examined in 4 randomized controlled trials (RCTs).

Aim

To evaluate ulcer healing through a meta-analytic approach after treatment with either Biatain Ag or a non-active dressing.

Patients and Methods

685 subjects with pure or mixed hard-to-heal venous leg ulcers were included in the meta-analysis.

Results

Biatain Ag showed a significant treatment effect (p<0.0001), responder rate (p<0.001), and healing rate (p = 0.002).

Conclusion

The meta-analysis of the 4 RCTs provided statistical significant evidence to support the use of Biatain Ag dressing in treatment of hard-to-heal venous leg ulcers.  相似文献   
5.
6.
The small-molecule inhibitor of phosphoglycerate dehydrogenase, NCT-503, reduces incorporation of glucose-derived carbons into serine in vitro. Here we describe an off-target effect of NCT-503 in neuroblastoma cell lines expressing divergent phosphoglycerate dehydrogenase (PHGDH) levels and single-cell clones with CRISPR-Cas9-directed PHGDH knockout or their respective wildtype controls. NCT-503 treatment strongly reduced synthesis of glucose-derived citrate in all cell models investigated compared to the inactive drug control and independent of PHGDH expression level. Incorporation of glucose-derived carbons entering the TCA cycle via pyruvate carboxylase was enhanced by NCT-503 treatment. The activity of citrate synthase was not altered by NCT-503 treatment. We also detected no change in the thermal stabilisation of citrate synthase in cellular thermal shift assays from NCT-503-treated cells. Thus, the direct cause of the observed off-target effect remains enigmatic. Our findings highlight off-target potential within a metabolic assessment of carbon usage in cells treated with the small-molecule inhibitor, NCT-503.  相似文献   
7.
8.
Engineering specific interactions between proteins and small molecules is extremely useful for biological studies, as these interactions are essential for molecular recognition. Furthermore, many biotechnological applications are made possible by such an engineering approach, ranging from biosensors to the design of custom enzyme catalysts. Here, we present a novel method for the computational design of protein-small ligand binding named PocketOptimizer. The program can be used to modify protein binding pocket residues to improve or establish binding of a small molecule. It is a modular pipeline based on a number of customizable molecular modeling tools to predict mutations that alter the affinity of a target protein to its ligand. At its heart it uses a receptor-ligand scoring function to estimate the binding free energy between protein and ligand. We compiled a benchmark set that we used to systematically assess the performance of our method. It consists of proteins for which mutational variants with different binding affinities for their ligands and experimentally determined structures exist. Within this test set PocketOptimizer correctly predicts the mutant with the higher affinity in about 69% of the cases. A detailed analysis of the results reveals that the strengths of PocketOptimizer lie in the correct introduction of stabilizing hydrogen bonds to the ligand, as well as in the improved geometric complemetarity between ligand and binding pocket. Apart from the novel method for binding pocket design we also introduce a much needed benchmark data set for the comparison of affinities of mutant binding pockets, and that we use to asses programs for in silico design of ligand binding.  相似文献   
9.
The NAD+-requiring enzymes of glycoside hydrolase family 4 (GHF4) contain a region with a conserved Gly-XXX-Gly-Ser (GXGS) motif near their N-termini that is reminiscent of the fingerprint region of the Rossmann fold, a conserved structural motif of classical nicotinamide nucleotide-binding proteins. The function of this putative NAD+-binding motif in the alpha-glucosidase AglA of Thermotoga maritima was probed by directed mutagenesis. The K(d) for NAD+ of the AglA mutants G10A, G12A and S13A was increased by about 300-, 5-, and 9-fold, respectively, while their K(m) for p-nitrophenyl-alpha-glucopyranoside was not seriously affected. The results indicate that the GXGS motif is indeed important for NAD+ binding by the glycosidases of GHF4.  相似文献   
10.
An approach was developed to evaluate the load transfer mechanism in the temporomandibular joint (TMJ) area before, during and after mandibular ramus elongation by distraction osteogenesis (DO). In a concerted approach using computer tomography, magnetic resonance imaging (MRI), and finite element analysis, three-dimensional numerical models based on a young male patient, with a dento-facial deformity were generated. The magnitude and direction of the muscle forces acting on the mandible were assessed using both values derived from the muscles volume and cross-section as retrieved from the MRI-scan data-sets and taken from the literature. The resistance of the soft tissue envelope towards elongation during the DO-phase was also included. The finite element analyses showed that before skeletal correction by DO the load transfer was asymmetrical with high peak stresses in the affected joint. Following ramus elongation a more symmetrical loading in TMJs was predicted. The reaction forces in the TMJs during DO were low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号