首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.

Background

One of the most common causes of morbidity and mortality in children with sickle cell disease (SCD) is infection with the pneumococcal bacterium (Streptococcus pneumoniae). Unfortunately, the polysaccharide-conjugate vaccine appears to be less effective in individuals with SCD when compared to the general population. We sought to better understand the relative efficacy of pneumococcal vaccination in a SCD mouse challenge model.

Methods

Transgenic control and SCD mice were monitored for mortality after intranasal pneumococcal infection or pneumococcal vaccination with Prevnar-13 and type-matched challenge. Anti-pneumococcal antibody titers were measured by ELISA and opsonophagocytosis was measured in vitro.

Results

Mortality after pneumococcal infection was similar between control and SCD mice. However, after three intramuscular polysaccharide-conjugate vaccinations, all control mice were protected following high-dose intranasal infection, whereas 60% of SCD mice died. Anti-pneumococcal antibody titers showed initial IgG and IgM responses in both groups, but waning titers were observed in the SCD group, even after boosting. When functionally assayed in vitro, serum from SCD mice 13 weeks after a second booster shot maintained little to no ability to opsonize pneumococci, while serum from control mice sustained a significantly higher capacity opsonization. Thus, it appears that SCD mice do not maintain antibody responses to pneumococcal polysaccharides after Prevnar-13 vaccination, thereby leaving them susceptible to mortality after type-matched infection.

Conclusion

Our results emphasize the need to better understand the correlates of immune protection in SCD so that pneumococcal vaccines can be improved and mortality reduced in this susceptible population.  相似文献   
2.
Human healthy (wild-type (WT)) and homozygous sickle (SS) red blood cells (RBCs) express a large number of surface receptors that mediate cell adhesion between RBCs, and between RBCs and white blood cells, platelets, and the endothelium. In sickle cell disease (SCD), abnormal adhesion of RBCs to endothelial cells is mediated by the intercellular adhesion molecule-4 (ICAM-4), which appears on the RBC membrane and binds to the endothelial αvβ3 integrin. This is a key factor in the initiation of vaso-occlusive episodes, the hallmark of SCD. A better understanding of the mechanisms that control RBC adhesion to endothelium may lead to novel approaches to both prevention and treatment of vaso-occlusive episodes in SCD. One important mechanism of ICAM-4 activation occurs via the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA)-dependent signaling pathway. Here, we employed an in vitro technique called single-molecule force spectroscopy to study the effect of modulation of the cAMP-PKA-dependent pathway on ICAM-4 receptor activation. We quantified the frequency of active ICAM-4 receptors on WT-RBC and SS-RBC membranes, as well as the median unbinding force between ICAM-4 and αvβ3. We showed that the collective frequency of unbinding events in WT-RBCs is not significantly different from that of SS-RBCs. This result was confirmed by confocal microscopy experiments. In addition, we showed that incubation of normal RBCs and SS-RBCs with epinephrine, a catecholamine that binds to the β-adrenergic receptor and activates the cAMP-PKA-dependent pathway, caused a significant increase in the frequency of active ICAM-4 receptors in both normal RBCs and SS-RBCs. However, the unbinding force between ICAM-4 and the corresponding ligand αvβ3 remained the same. Furthermore, we demonstrated that forskolin, an adenylyl cyclase activator, significantly increased the frequency of ICAM-4 receptors in WT-RBCs and SS-RBCs, confirming that the activation of ICAM-4 is regulated by the cAMP-PKA pathway. Finally, we showed that A-kinase anchoring proteins play an essential role in ICAM-4 activation.  相似文献   
3.
Human normal and sickle red blood cells (RBCs) adhere with high affinity to the alpha5 chain of laminin (LAMA5) via the basal cell adhesion molecule/Lutheran (BCAM/Lu) receptor, which is implicated in vasoocclusive episodes in sickle cell disease and activated through the cyclic adenosine monophosphate (cAMP) signaling pathway. However, the effect of the cAMP pathway on the expression of active BCAM/Lu receptors at the single-molecule level is unknown. We established an in vitro technique, based on atomic force microscopy, which enables detection of single BCAM/Lu proteins on the RBC surface and measures the unbinding force between BCAM/Lu and LAMA5. We showed that the expression of active BCAM/Lu receptors is higher in homozygous sickle RBCs (SS-RBCs) than normal RBCs and that it is critically dependent on the cAMP signaling pathway on both normal and SS-RBCs. Of importance, we illustrated that A-kinase anchoring proteins are crucial for BCAM/Lu receptor activation. Furthermore, we found that SS-RBCs from hydroxyurea-treated patients show a lower expression of active BCAM/Lu receptors, a lower unbinding force to LAMA5, and insignificant stimulation by epinephrine as compared to SS-RBCs from untreated patients. To our knowledge, these findings may lead to novel antiadhesive targets for vasoocclusive episodes in sickle cell disease.  相似文献   
4.
We recently identified a voltage-dependent anion channel on the surface of human red blood cells (RBCs) infected with the malaria parasite, Plasmodium falciparum. This channel, the plasmodial erythrocyte surface anion channel (PESAC), likely accounts for the increased permeability of infected RBCs to various small solutes, as assessed quantitatively with radioisotope flux and patch-clamp studies. Whereas this increased permeability has also been studied by following osmotic lysis of infected cells in permeant solutes, these experiments have been limited to qualitative comparisons of lysis rates. To permit more quantitative examination of lysis rates, we have developed a mathematical model for osmotic fragility of infected cells based on diffusional uptake via PESAC and the two-compartment geometry of infected RBCs. This model, combined with a simple light scattering assay designed to track osmotic lysis precisely, produced permeability coefficients that match both previous isotope flux and patch-clamp estimates. Our model and light scattering assay also revealed Michaelian kinetics for inhibition of PESAC by furosemide, suggesting a 1:1 stoichiometry for their interaction.  相似文献   
5.
Collapse and sudden death in physical training are the most serious complications of sickle cell trait (SCT). There is evidence that erythrocytes in SCT patients aggregate during strenuous exercise, likely because of adhesive interactions with the extracellular matrix (ECM) and endothelial cells, and because of their irregular viscoelastic properties. This results in inflammation, blood flow impairment, and vaso-occlusive events. However, the exact role of stress conditions and how they lead to these complications is virtually unknown. Using single-molecule atomic force microscopy experiments, we found that epinephrine, a hormone that is secreted under stressful conditions, increases both the frequency and strength of adhesion events between basal cell adhesion molecule (BCAM/Lu) and ECM laminin, and between intercellular adhesion molecule-4 (ICAM-4) and endothelial α(v)β(3), compared with nonstimulated SCT erythrocytes. Increases in adhesion frequency provide significant evidence of the role of epinephrine in BCAM/Lu-laminin and ICAM-4-α(v)β(3) bonding, and suggest mechanisms of vaso-occlusion during physical exertion in SCT.  相似文献   
6.
Human normal and sickle red blood cells (RBCs) adhere with high affinity to the alpha5 chain of laminin (LAMA5) via the basal cell adhesion molecule/Lutheran (BCAM/Lu) receptor, which is implicated in vasoocclusive episodes in sickle cell disease and activated through the cyclic adenosine monophosphate (cAMP) signaling pathway. However, the effect of the cAMP pathway on the expression of active BCAM/Lu receptors at the single-molecule level is unknown. We established an in vitro technique, based on atomic force microscopy, which enables detection of single BCAM/Lu proteins on the RBC surface and measures the unbinding force between BCAM/Lu and LAMA5. We showed that the expression of active BCAM/Lu receptors is higher in homozygous sickle RBCs (SS-RBCs) than normal RBCs and that it is critically dependent on the cAMP signaling pathway on both normal and SS-RBCs. Of importance, we illustrated that A-kinase anchoring proteins are crucial for BCAM/Lu receptor activation. Furthermore, we found that SS-RBCs from hydroxyurea-treated patients show a lower expression of active BCAM/Lu receptors, a lower unbinding force to LAMA5, and insignificant stimulation by epinephrine as compared to SS-RBCs from untreated patients. To our knowledge, these findings may lead to novel antiadhesive targets for vasoocclusive episodes in sickle cell disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号