首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  83篇
  2023年   2篇
  2021年   5篇
  2019年   2篇
  2018年   1篇
  2016年   4篇
  2015年   8篇
  2014年   9篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
排序方式: 共有83条查询结果,搜索用时 0 毫秒
1.
Regulatory T cells and tumor immunity   总被引:9,自引:0,他引:9  
Central deletion of self-reactive T cells has been the textbook paradigm for inducing self-tolerance in the periphery and the concept of a role of T cell-mediated suppression in this process has long been controversial. A decisive shift in the opinion on suppressor T cells has lately occurred with the observations of Sakaguchis group that linked a class of CD4+CD25+ T cells to the prevention of autoimmunity from neonatal thymectomy in mice. These CD4+CD25+ T cells have been named T regulatory (Treg) cells. They are believed to be selected in the thymus as an anti-self repertoire. Hence they were referred to as natural T regulatory (nTreg) cells. Presently, in addition to their role in autoimmunity, they are believed to exert regulatory function in infection, in transplantation immunity as well as in tumor immunity. In contrast to these nTreg cells, another class of CD4+ Treg cells also exercises regulatory function in the periphery. These Treg cells are also CD4+ T cells and after activation they also become phenotypically CD4+CD25+. They are, however induced in the periphery as Treg cells. Hence, they are termed as induced Treg (iTreg) cells. There are major differences in the biology of these two types of Treg cells. They differ in their requirements for activation and in their mode of action. Nonetheless, evidence indicates that both nTreg cells and iTreg cells are involved in the control of tumor immunity. The question of how to circumvent their regulatory constraints, therefore, has become a major challenge for tumor immunologists.  相似文献   
2.
    
The length-weight relationships (LWRs) of six Nemacheilid species (Schistura chindwinica, S. fasciata, S. khugae, S. minuta, S. reticulata and S. rubrimaculata) have been analyzed. Fish samples were collected on quarterly basis from March 2018 to February 2019. Sampling was performed using cast nets (mesh size 5–10 mm; about 50 sq m area covered each time and water depth was 4 ft approx.), and electrofishing (Ultrasonic Inverter Electro Fisher, 24 volts, 4 m) in the day time. The total length (TL) of individual fish was measured to 0.1 cm with a digital caliper and body weights (BW) were measured to 0.001 g with digital electronic balances. The parameters for the LWR equations were calculated, and the respective statistics such as the 95% confidence interval for parameters “a” and “b” are provided as well as the coefficient of correlation. For five species a new maximum total length has been documented.  相似文献   
3.
    
Journal of Plant Research - Plants’ ability to sense and respond to gravity is a unique and fundamental process. When a plant organ is tilted, it adjusts its growth orientation relative to...  相似文献   
4.
The bacterial diversity of a hot spring in Bakreshwar, India, was investigated by a culture-independent approach. 16S ribosomal DNA clones derived from the sediment samples were found to be associated with gamma-Proteobacteria, cyanobacteria, and green nonsulfur and low-GC gram-positive bacteria. The first of the above phylotypes cobranches with Shewanella, a well-known iron reducer. This phylogenetic correlation has been exploited to develop culture conditions for thermophilic iron-reducing microorganisms.  相似文献   
5.
6.
    
Nucleotide binding and oligomerization domain (NOD2) is a key component of innate immunity that is highly specific for muramyl dipeptide (MDP)—a peptidoglycan component of bacterial cell wall. MDP recognition by NOD2–leucine rich repeat (LRR) domain activates NF‐κB signaling through a protein–protein interaction between caspase activating and recruitment domains (CARDs) of NOD2 and downstream receptor interacting and activating protein kinase 2 (RIP2). Due to the lack of crystal/NMR structures, MDP recognition and CARD–CARD interaction are poorly understood. Herein, we have predicted the probable MDP and CARD–CARD binding surfaces in zebrafish NOD2 (zNOD2) using various in silico methodologies. The results show that the conserved residues Phe819, Phe871, Trp875, Trp929, Trp899, and Arg845 located at the concave face of zNOD2–LRR confer MDP recognition by hydrophobic and hydrogen bond (H‐bond) interactions. Molecular dynamics simulations reveal a stable association between the electropositive surface on zNOD2–CARDa and the electronegative surface on zRIP2–CARD reinforced mostly by H‐bonds and electrostatic interactions. Importantly, a 3.5 Å salt bridge is observed between Arg60 of zNOD2–CARDa and Asp494 of zRIP2–CARD. Arg11 and Lys53 of zNOD2–CARDa and Ser498 and Glu508 of zRIP2–CARD are critical residues for CARD–CARD interaction and NOD2 signaling. The 2.7 Å H‐bond between Lys104 of the linker and Glu508 of zRIP2–CARD suggests a possible role of the linker for shaping CARD–CARD interaction. These findings are consistent with existing mutagenesis data. We provide first insight into MDP recognition and CARD–CARD interaction in the zebrafish that will be useful to understand the molecular basis of NOD signaling in a broader perspective. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Activation-induced cell death (AICD) as well as programmed cell death (PCD) serve to control the expansion of activated T cells to limit untoward side effects of continued effector responses by T cells and to maintain homeostasis. AICD of T cells in tumor immunotherapy can be counterproductive particularly if the activated T cells undergo apoptotic death after the very first secondary encounter of the specific epitope. We examined the extent to which tumor epitope-specific CTLs that are activated and expanded in an in vitro-matured dendritic cell-based primary stimulation protocol undergo AICD following their first secondary encounter of the cognate epitope. Using the MART-1(27-35) epitope as a prototype vaccine epitope, we also examined whether these CTLs could be rescued from AICD. Our results demonstrate that a substantial fraction of MART-1(27-35) epitope-specific primary CTLs undergo AICD upon the very first secondary encounter of the cognate epitope. The AICD in these CTLs is neither caspase dependent nor is it triggered by the extrinsic death signaling pathways (Fas, TNFR, etc.). These CTLs, interestingly, could be rescued from AICD by the JNK inhibitor, SP600125. We also found that SP600125 interferes with their IFN-gamma response but does not block their cytolytic function. The rescued CTLs, however, regain their capacity to synthesize IFN-gamma if continued in culture without the inhibitor. These observations have implications in tumor immunotherapy and in further studies for regulation of AICD in CTLs.  相似文献   
8.
Summary Soil nitrate profiles under seven treatments of an experiment on intercropping in row crops were studied at sowing and the after harvesting of different crops. The estimates of NO3 –N in these profiles indicate that intercropping in the row crops grown during the rainy season considerably reduced leaching loss of nitrates. Where the main crop receives the recommended fertilizer amount and the intercrop a small additional application, intercropping greatly reduced the amount of unutilized nitrates and hence their leaching beyong root zone.  相似文献   
9.
Intestinal parasitic infections are one of the major causes of diarrhea in human immunodeficiency virus (HIV) seropositive individuals. Antiretroviral therapy has markedly reduced the incidence of many opportunistic infections, but parasite-related diarrhea still remains frequent and often underestimated especially in developing countries. The present hospital-based study was conducted to determine the spectrum of intestinal parasitosis in adult HIV/AIDS (acquired immunodeficiency syndrome) patients with or without diarrhea with the levels of CD4+ T-cell counts. A total of 400 individuals were enrolled and were screened for intestinal parasitosis. Of these study population, 200 were HIV seropositives, and the remaining 200 were HIV uninfected individuals with or without diarrhea. Intestinal parasites were identified by using microscopy as well as PCR assay. A total of 130 (32.5%) out of 400 patients were positive for any kinds of intestinal parasites. The cumulative number of parasite positive patients was 152 due to multiple infections. A significant association of Cryptosporidium (P<0.001) was detected among individuals with CD4+ T-cell counts less than 200 cells/μl.  相似文献   
10.
    
Numerous reports have appeared on the occurrence of undefined protein factors in male reproductive fluids that promote motility of mature sperm and initiate forward motility in the immature (immotile) caput‐epididymal sperm. This study reports for the first time purification to apparent homogeneity of a motility initiating protein (MIP) from epididymal plasma and its characterization using the caprine sperm model. It is a 125 kDa (approximately) dimeric protein made up of two subunits: 70 and 54 kDa. MIP is an acidic protein with an isoelectric point of 4.75. The motility protein at 30 µg/ml (240 nM) level showed nearly maximal motility‐promoting activity. MIP is heat stable and it is maximally active at pH 8. It is a glycoprotein that binds with high affinity to concanavalin A and it contains mannose, galactose, and N‐acetyl glucosamine approximately in the ratios of 6:1:6. It is sensitive to the actions of α‐mannosidase and β‐N‐acetylglucoseaminidase thereby demonstrating that the sugar side chain of the glycoprotein is essential for its biological activity. Epididymal plasma is its richest source. It is also capable of enhancing forward motility of mature cauda‐sperm. Its antibody markedly inhibits sperm motility. MIP antibody is highly immunospecific and it recognizes both the subunits. MIP causes significant increase of the intrasperm level of cyclic AMP. MIP: the physiological motility‐activating protein has potential for use as a contraceptive vaccine and for solving some of the problems of human infertility and animal breeding. J. Cell. Physiol. 222:254–263, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号