首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  2008年   2篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1984年   4篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Abstract: It is well documented that nerve growth factor (NGF) plays an important role in maintaining functions of cholinergic basal forebrain neurons. In the present study, we tested the hypothesis that cholinergic activity controls NGF levels in cholinoceptive neurons of the cerebral cortex and hippocampus. To address that question, we used both cholinergic deafferentation of cerebral cortex and hippocampus by cholinergic immunolesion with 192IgG-saporin and chronic pharmacological treatment of sham-treated and immunolesioned rats with the cholinergic agonist pilocarpine and the cholinergic antagonist scopolamine. We observed an increase in NGF protein levels in the cortex and hippocampus after cholinergic immunolesions and also after muscarinic receptor blockade by chronic intracerebroventricular scopolamine infusion in sham-treated rats after 2 weeks. There was no further increase in the accumulation of NGF after scopolamine treatment of immunolesioned rats. Chronic infusion of pilocarpine had no effect on cortical and hippocampal NGF protein levels in sham-treated rats. In rats with cholinergic immunolesions, however, pilocarpine did prevent the lesion-induced accumulation of NGF. There was no effect of cholinergic lesion and drug treatment on cortical or hippocampal NGF mRNA levels, consistent with the importance of NGF retrograde transport as opposed to its de novo synthesis. This study provides strong evidence for the hypothesis that there is cholinergic control of cortical and hippocampal NGF protein but not mRNA levels in adult rats.  相似文献   
2.
The effect of monocular deprivation (covering one eye on the 11th posnatal day) and rearing in darkness (the animals were born, developed, and killed with total exclusion of light) on development of -adrenergic, serotoninergic, muscarinic cholinergic, glutamatergic, and benzodiazepine receptors in primary visual structures (visual cortex, lateral geniculate body, superior colliculus, and retina) was investigated in rats. For quantitative analysis of neurotransmitter receptors, the technique of ligand binding was used. It was shown that monocular deprivation affects the development of -adrenergic, serotoninergic, and glutaminergic receptors mainly in the lateral geniculate body and retina, whereas rearing in darkness affects mainly the development of serotoninergic receptors in the superior colliculus. The development of receptors of the cholinergic neurotransmitter system is disturbed only temporarily by visual deprivation. Changes found in receptor development after visual deprivation indicate altered activity of different neurotransmitter systems in corresponding visual structures.P. Flechsig Brain Research Institute, Leipzig, East Germany. Karl Marx University, Leipzig, East Germany. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 691–701, September–October, 1984.  相似文献   
3.
A possible epigenetic regulation of the two isoenzymes of fructose 1,6-bisphosphatase (FBPase) was studied in liver, muscle, mamma, breast cancer and in different cancer cell lines. Results obtained after bisulfite sequencing revealed a different CpG methylation of both promoters in liver, muscle and breast tissue which is putatively involved in the cell-type specific gene expression of the two enzymes. In tumor cell lines, demethylation with 5-aza-deoxycytidine activated the expression of both isoenzymes. Additional inhibition of histone deacetylase with trichostatin A further increased FBPase mRNA concentrations. Since cancers typically have an abnormal energy metabolism and exhibit a low gluconeogenic phenotype, it was studied whether promoter methylation contributes to the decreased expression of FBPase in breast cancer. When non-malignant and malignant tissue samples from the same patient were compared a correlation between an increase of FBPase promoter methylation and a decrease of FBPase mRNA levels was observed.  相似文献   
4.
The aim of this study was to determine whether L-glutamate, a major excitatory transmitter in the cerebral cortex, modulates the proteolytic cleavage of the amyloid precursor protein (APP) in the brain through specific receptor activation. Native rat brain cerebral cortical slices were stimulated either with L-glutamate or various glutamate receptor agonists, and the soluble APP derivatives released into the incubation medium were assayed by Western blot analysis. Immunoprecipitation with specific antibodies revealed that in the medium only secretory forms of APP lacking intact C-terminus were present, whereas in the brain slices both C- and N-terminal intact APP products were detectable. L-glutamate induced the release of secretory APP from cortical slices in a concentration-dependent but biphasic manner, with the highest release at 50 μM L-glutamate and smaller effects at higher glutamate concentrations. To determine whether the effect of L-glutamate is mediated through distinct glutamate receptor subtypes, brain slices were incubated in the presence of various specific glutamate receptor agonists. Activation of the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor with 50 nM (RS)-bromohomoibotenic acid resulted in a reduced release of secretory APP by 17%±3 (P<0.01, one tailed Student's t-test) compared to the incubation without any drug. Stimulation of the metabotropic glutamate receptor with 50 nM (2S,3S,4S)--(carboxycyclopropyl)-glycine (L-CCG-I) led to an enhanced release of secretory APP by 39%±3 (P<0.001), whereas activation of the N-methyl-D-aspartate (NMDA) receptor with 50 nM (1R,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1R,3R)-ACPD) did not significantly change the secretion of APP compared to the incubation without any drug. The data suggest that: (i) cortical glutamatergic neurotransmission is involved in APP metabolism; and (ii) the stimulation of APP cleavage in cerebral cortical brain slices is mainly mediated by the metabotropic but not the NMDA glutamate receptor subtype, whereas the AMPA receptor subtype seems to inhibit the secretory path of APP processing.  相似文献   
5.
A modified procedure for the quantitative estimation of choline acetyltransferase activity in brain tissue based upon the formation of [3H]-ACh from [3H]-acetyl-CoA is described. The labelled ACh is isolated by a modification of Fonnum's procedure using sodium tetraphenyl borate in ketonic solution. The ChAc-activity is independent on the specific activity of the [3H]-acetyl-CoA used. The substrate blank is higher than with [14C]-labelled substrate but highly stable and reproducible. The method permits the determination of ChAc activity in less than 5 mug of brain tissue. 30-40 samples may be handled by one person per hour easily.  相似文献   
6.
Advanced glycation end products (AGEs) that arise from the reaction of sugars with protein side chains and the terminal amino group are supposed to be involved in the pathogenesis of several diseases and therefore the effects of AGEs on cells are the objective of numerous investigations. The effects of AGEs on cells are commonly assumed to be transduced via the receptor for AGEs (RAGE) but there are also other receptors known to interact with AGEs and they are likely to be involved in signal transduction. The primary cellular effect of AGEs on cultured cells was found to be the formation of reactive oxygen species (ROS). For the present study one murine and three human cell lines were used. The effects of a set of different highly modified AGEs and AGE-like compounds derived from the incubation of different modifiers with BSA were tested for their effects on these cells. Almost all AGEs tested induced the production of reactive oxygen species (ROS) in the different cell lines although the intensity of the detected signals varied considerably between the cell lines and are strongly dependent on the AGE used for cell activation. The most highly modified BSA-species were shown to inhibit cell growth in all cell lines, whereas a moderately modified glucose derived BSA-AGE and BSA-GA(red) did not show any inhibitory effect on cell growth even when a high ROS formation was detected.  相似文献   
7.
Feil  R.  Bigl  M.  Ruth  P.  Hofmann  F. 《Molecular and cellular biochemistry》1993,127(1):71-80
Cyclic GMP-dependent protein kinase (cGMP kinase) is involved in the relaxation of smooth muscle. The enzyme has been cloned and expressed in eukaryotic cell lines but so far not in prokaryotic cells. Three vectors were constructed for the expression of I cGMP kinase inEscherichia coli. Transformation with the pET3a/cgk vector which uses the T7 RNA polymerase/promotor system resulted in efficient accumulation of cGMP kinase. Most of the protein was in an insoluble and catalytic inactive form. Various solubilization and refolding conditions did not yield an active enzyme. A small fraction of the cGMP kinase was present in the soluble cell extract. This fraction bound cGMP with high affinity but had no cGMP stimulated kinase activity. To prevent aggregation two additional vectors were constructed. (I) A bacterial leader sequence, which directs the export of proteins into the periplasmic space, was fused to the aminoterminus of the cGMP kinase. (II) A gram/gram+ shuttle vector for expression under the control of the tac promotor was used. Both constructs directed the synthesis of an isoluble and inactive cGMP kinase. These results suggest that large amounts of cGMP kinase can be expressed inE. coli, but mainly in an isoluble and inactive form. In contrast to eukaryotic cells, bacteria may lack systems for correct protein folding and/or posttranslational modification that are crucial for the productive folding and/or activation of cGMP kinase.  相似文献   
8.
In 25 day old rats monocularly deprived by unilateral eyelid suture on postnatal day 10 (MD), [3H]quinuclidinyl benzylate (3H-QNB) binding was significantly reduced in the visual cortex (VC) of both sides, but elevated in both superior colliculi (SC). Muscarinic receptor binding in the frontal cortex (FC), a non-visual brain area, in the lateral geniculate nucleus (LGN), and in the retina was not affected. In 25 day old rats raised in complete darkness from birth (DR) similar changes in3H-QNB binding were found in VC and SC. However, binding levels were also decreased in the FC and significantly increased in the retina. In adult (6 month old) MD and DR rats the differences in3H-QNB binding as compared to age-matched controls had disappeared completely in all visual brain areas studied. Detailed Scatchard analyses indicate that the alterations in the3H-QNB binding were due to changes in receptor number only.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   
9.
Selective lesion of rat basal forebrain by the cholinergic immunotoxin 192IgG-saporin was used as an animal model to address the question of whether the changes in cortical glucose metabolism observed in patients with Alzheimer's disease may be related to impaired cholinergic transmission. At different times after creating the immunolesion, the isoenzyme pattern and steady-state mRNA levels of the key glycolytic enzyme phosphofructokinase were determined in cortex, hippocampus, basal forebrain and nucleus caudatus. The loss of cholinergic input was accompanied by a persistent decrease in choline acetytransferase and acetylcholine esterase activities in the cortical target areas similar to the cholinergic malfunction seen in Alzheimer's dementia. The basal forebrain lesion induced by the immunotoxin resulted in a transient increase in phosphofructokinase activity peaking on day 7 after inducing the lesion in cortical areas. In parallel, an increased steady-state level of phosphofructokinase mRNA was determined by RT/real-time PCR and in situ hybridization. In contrast, analysis by western blotting and quantitative PCR revealed no changes in the phosphofructokinase isoenzyme pattern after immunolesion. It is concluded that common metabolic mechanisms may underlie the degenerative and repair processes in denervated rat brain and in the diseased Alzheimer's brain.  相似文献   
10.
—Rats were reared in complete darkness or under chronic stimulation with flashing light from birth to the age of 7 weeks. Light deprivation caused a significant increase in monoamine oxidase activity (measured with [14C]serotonin) of about 30 per cent in the structures of the visual pathway. Chronic stimulation with flashing light had no influence on the activity of monoamine oxidase in either visual or non-visual structures. The activity of catechol-O-methyl transferase in the brain areas of light-deprived rats was reduced, in light-stimulated rats it was slightly increased. In mother rats kept together with their litters in either complete darkness or flashing light for 5 weeks no change in monoamine oxidase activity was observed. The activity of catechol-O-methyl transferase in mother rats kept in darkness was significantly decreased in all brain regions studied; in light-stimulated animals the enzyme activity was not affected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号