首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
  2022年   1篇
  2020年   1篇
  2016年   2篇
  2013年   2篇
  2012年   4篇
  2010年   1篇
  2009年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有42条查询结果,搜索用时 46 毫秒
1.
We have evaluated codon usage bias in Drosophila histone genes and have obtained the nucleotide sequence of a 5,161-bp D. hydei histone gene repeat unit. This repeat contains genes for all five histone proteins (H1, H2a, H2b, H3, and H4) and differs from the previously reported one by a second EcoRI site. These D. hydei repeats have been aligned to each other and to the 5.0-kb (i.e., long) and 4.8-kb (i.e., short) histone repeat types from D. melanogaster. In each species, base composition at synonymous sites is similar to the average genomic composition and approaches that in the small intergenic spacers of the histone gene repeats. Accumulation of synonymous changes at synonymous sites after the species diverged is quite high. Both of these features are consistent with the relatively low codon usage bias observed in these genes when compared with other Drosophila genes. Thus, the generalization that abundantly expressed genes in Drosophila have high codon bias and low rates of silent substitution does not hold for the histone genes.   相似文献   
2.
3.
Human tumor endothelial marker 1/endosialin (TEM1/endosialin) was recently identified as a novel tumor endothelial cell surface marker potentially involved in angiogenesis, although no specific function for this novel gene has been assigned so far. It was reported to be expressed in tumor endothelium but not in normal endothelium with the exception of perhaps the corpus luteum. Here we describe the cDNA and genomic sequences for the mouse Tem1/endosialin homolog, the identification and characterization of its promoter region, and an extensive characterization of its expression pattern in murine and human tissues and murine cell lines in vitro. The single copy gene that was mapped to chromosome 19 is intronless and encodes a 92-kDa protein that has 77.5% overall homology to the human protein. The remarkable findings are 1) this gene is ubiquitously expressed in normal human and mouse somatic tissues and during development, and 2) its expression at the mRNA level is density-dependent and up-regulated in serum-starved cells. In vitro, its expression is limited to cells of embryonic, endothelial, and preadipocyte origin, suggesting that the wide distribution of its expression in vivo is due to the presence of vascular endothelial cells in all the tissues. The ubiquitous expression in vivo is in contrast to previously reported expression limited to corpus luteum and highly angiogenic tissues such as tumors and wound tissue.  相似文献   
4.
Dog pancreas microsomes represent the key components of the established model system for the analysis of protein transport into the mammalian endoplasmic reticulum. More recently, these microsomes were also employed in cell-free systems which address questions related to protein folding and protein degradation in the mammalian endoplasmic reticulum. In order to get at a complete picture of these undoubtedly related processes in the in vitro system we need to know all the proteins we are dealing with, and their respective stoichiometries. Here we give a progress report on our attempts to identify and to quantify the soluble molecular chaperones and folding catalysts which are present in the lumen of dog pancreas microsomes. Eventually, we will need to know how the in vitro system compares with the situation in intact pancreatic cells as well as in other cells.  相似文献   
5.
6.
7.
8.
9.
Learning‐correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron‐specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity‐ and NMDAR‐dependent manner. In addition, Ng‐mediated potentiation of synaptic transmission mimics and occludes long‐term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng–CaM binding is necessary for Ng‐mediated potentiation. Moreover, knocking‐down Ng blocked LTP induction. Thus, Ng–CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号