首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   23篇
  313篇
  2022年   3篇
  2021年   5篇
  2018年   3篇
  2015年   10篇
  2014年   5篇
  2013年   8篇
  2012年   4篇
  2011年   17篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   11篇
  2004年   13篇
  2003年   6篇
  2002年   9篇
  2001年   9篇
  2000年   3篇
  1999年   7篇
  1998年   12篇
  1997年   7篇
  1996年   5篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   6篇
  1990年   11篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   6篇
  1974年   3篇
  1973年   2篇
  1972年   5篇
  1971年   2篇
  1970年   7篇
  1969年   6篇
  1968年   6篇
  1967年   3篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
1.
2.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   
3.
Using both fluorescent labelled toxin and antibody--secondary antibody techniques, the Bacillus sphaericus toxin was found to bind strongly to susceptible Culex quinquefasciatus cells, but far less strongly to cells of insensitive insects. An insensitive clone of the C. quinquefasciatus cell line was discovered which bound toxin efficiently. The toxin was bound in the cold to sensitive cells and these cells could be rescued from cytotoxicity for ca. 15 min after warming, by which time toxin appeared to be internalized. Binding was saturable. This toxin is apparently internalized by receptor-mediated endocytosis, probably involving a glycoprotein receptor containing N-acetyl-D-glucosamine. Evidence for toxin binding to lipids was not found. Antibody appeared to detect internalized toxin, and high concentrations of sugars inhibited cytotoxicity; these results along with evidence from a recent ultrastructural study suggest that this toxin may form pores in the cell membrane.  相似文献   
4.
In situ high-temperature, high-pressure Raman experiments on 3 mM (pH 5) aqueous solutions of hen egg-white (HEW) lysozyme show a decrease in the relative height of the 505 cm–1 band associated with S-S stretching vibrations at 72°C (1 bar). The peak height changes are accompanied by significant band broadening, and the integrated band intensity does not change within experimental error. The effect of increased pressure at 72°C was to hinder broadening of the 505 cm–1 band. HEW lysozyme (2.4 mM,pH 5) was also heated at 76°C, 80°C, and 95°C for different periods of time, and aliquots were quenched to room temperature for Raman and enzymatic activity measurements. After 9 hr at 76°C, the protein exhibits enzyme activity less than 50% of the initial value, and approximately 50% reduction in activity is achieved after 3 hr at 80°C or 1 hr at 95°C. The Raman results suggest that different irreversibly denatured conformations are attained during prolonged exposures at these different temperatures. It is apparent from these studies that the S-S stretch intensity is decreased irreversibly.  相似文献   
5.
The steady state levels of mitochondrial acyl-CoAs produced during the oxidation of pyruvate, alpha-ketoisovalerate, alpha-ketoisocaproate, and octanoate during state 3 and state 4 respiration by rat heart and liver mitochondria were determined. Addition of carnitine lowered the amounts of individual short-chain acyl-CoAs and increased CoASH in a manner that was both tissue- and substrate-dependent. The largest effects were on acetyl-CoA derived from pyruvate in heart mitochondria using either state 3 or state 4 oxidative conditions. Carnitine greatly reduced the amounts of propionyl-CoA derived from alpha-ketoisovalerate, while smaller effects were obtained on the branched-chain acyl-CoA levels, consistent with the latter acyl moieties being poorer substrates for carnitine acetyltransferase and also poorer substrates for the carnitine/acylcarnitine translocase. The levels of acetyl-CoA in heart and liver mitochondria oxidizing octanoate during state 3 respiration were lower than those obtained with pyruvate. The rate of acetylcarnitine efflux from heart mitochondria during state 3 (with pyruvate or octanoate as substrate, in the presence or absence of malate with 0.2 mM carnitine) shows a linear response to the acetyl-CoA/CoASH ratio generated in the absence of carnitine. This relationship is different for liver mitochondria. These data demonstrate that carnitine can modulate the aliphatic short-chain acyl-CoA/CoA ratio in heart and liver mitochondria and indicate that the degree of modulation varies with the aliphatic acyl moiety.  相似文献   
6.
Single batrachotoxin-activated sodium channels from rat brain were modified by trimethyloxonium (TMO) after incorporation in planar lipid bilayers. TMO modification eliminated saxitoxin (STX) sensitivity, reduced the single channel conductance by 37%, and reduced calcium block of inward sodium currents. These effects always occurred concomitantly, in an all-or-none fashion. Calcium and STX protected sodium channels from TMO modification with potencies similar to their affinities for block. Calcium inhibited STX binding to rat brain membrane vesicles and relieved toxin block of channels in bilayers, apparently by competing with STX for the toxin binding site. These results suggest that toxins, permeant cations, and blocking cations can interact with a common site on the sodium channel near the extracellular surface. It is likely that permeant cations transiently bind to this superficial site, as the first of several steps in passing inward through the channel.  相似文献   
7.
8.
The structural properties of isolated purified rat brain synaptosomal membranes, both in the presence and absence of purified active toxin of the Mojave snake Crotalus scutulatus scutulatus, were studied by spin-label electron spin resonance techniques. The spectra from eight different positional isomers of nitroxide-labelled stearic acids, a rigid steroid androstanol, and a spin-labelled phosphatidylcholine intercalated into the synaptosomal membranes, were obtained as a function of temperature from 4-40 degrees C. The flexibility gradient (from spin-label order parameters) and polarity profile (from isotropic splitting factors) across the synaptosomal membranes, was characteristic for lipid bilayers. The nitroxide spin-labelled steroid, androstanol, intercalated into the synaptosomal membrane, revealed the abrupt onset of rapid cooperative rotation about the long axis of the molecule at 12 degrees C showing that the lipid molecules are rotating rapidly around their long axes at physiological temperatures. The presence of the Mojave toxin affected the synaptosomal membrane in a complex manner, depending upon the temperature and the position of the nitroxide label on the alkyl chain of the stearic acid probe. Mojave toxin exerted little effect on the flexibility gradient of the synaptosomal membrane at 20 degrees C, a temperature at which the acyl chain labels detected a structural change in the membranes. At temperatures lower than 20 degrees C, the Mojave toxin produced a change in the flexibility gradient of the synaptosomal membrane which indicated an increased disordering in the upper region of the membrane and a concomitant increased ordering of the acyl chains in the deeper regions of the membrane. At temperatures higher than 20 degrees C, the order profile of the synaptosomal membrane was shifted by the presence of the Mojave toxin in a manner which indicated that the outer parts of the membrane were more rigid and the inner regions more fluid, than in controls. A cross-over point for the perturbation occurred at C8-9, which is about 12-14 A into the membrane. This is the approximate depth of the hydrophobic pocket shown in pancreatic phospholipase A2 [Drenth et al. (1976) Nature (Lond.) 264, 373-377], a protein likely to be homologous to the basic subunit of the toxin. At all temperatures, rotational lipid motion was inhibited by the toxin as indicated by the steroid probe. The electron spin-resonance spin-label results are interpreted in terms of the partial penetration of the basic subunit of the intact toxin into the membrane, disordering the ordered chains at low temperature and ordering the disordered chains at physiological temperatures. The purified individual toxin subunits did not perturb the membrane lipids at physiological temperatures implying that both subunits must be associated for activity of the toxin which is confirmed by toxicity studies.  相似文献   
9.
We have developed a new approach to the measurement of phylogenetic signal in character state matrices called relative apparent synapomorphy analysis (RASA). RASA provides a deterministic, statistical measure of natural cladistic hierarchy (phylogenetic signal) in character state matrices. The method works by determining whether a measure of the rate of increase of cladistic similarity among pairs of taxa as a function of phenetic similarity is greater than a null equiprobable rate of increase. Our investigation of the utility and limitations of RASA using simulated and bacteriophage T7 data sets indicates that the method has numerous advantages over existing measures of signal. A first advantage is computational efficiency. A second advantage is that RASA employs known methods of statistical inference, providing measurable sensitivity and power. The performance of RASA is examined under various conditions of branching evolution as the number of characters, character states per character, and mutations per branch length are varied. RASA appears to provide an unbiased and reliable measure of phylogenetic signal, and the general approach promises to be useful in the development of new techniques that should increase the rigor and reliability of phylogenetic estimates.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号