首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2757篇
  免费   188篇
  2945篇
  2022年   24篇
  2021年   36篇
  2019年   31篇
  2018年   24篇
  2017年   22篇
  2016年   48篇
  2015年   91篇
  2014年   91篇
  2013年   113篇
  2012年   142篇
  2011年   152篇
  2010年   72篇
  2009年   84篇
  2008年   99篇
  2007年   112篇
  2006年   97篇
  2005年   92篇
  2004年   96篇
  2003年   98篇
  2002年   115篇
  2001年   74篇
  2000年   79篇
  1999年   71篇
  1998年   38篇
  1997年   37篇
  1996年   33篇
  1995年   23篇
  1994年   25篇
  1993年   23篇
  1992年   54篇
  1991年   56篇
  1990年   43篇
  1989年   52篇
  1988年   37篇
  1987年   45篇
  1986年   33篇
  1985年   28篇
  1984年   38篇
  1983年   36篇
  1982年   27篇
  1981年   26篇
  1980年   22篇
  1979年   30篇
  1978年   21篇
  1977年   21篇
  1976年   21篇
  1975年   34篇
  1974年   27篇
  1973年   28篇
  1972年   20篇
排序方式: 共有2945条查询结果,搜索用时 15 毫秒
1.
The dynamics of stomatal resistance and osmotic adjustment in response to plant water deficits and stage of physiological development was studied in the leaves of spring wheat ( Triticum aestivum L., GWO 1809). Plants were germinated and grown in pots in a growth chamber at the Duke University Phytotron to four physiological stages of development (4th leaf, 7th leaf, anthesis, and soft dough), during which time stomatal resistance, total water potential and osmotic potential were measured on the last fully developed leaf of water stressed and non-stressed plants. Pressure potential was obtained by difference. Stomatal closure of the abaxial and adaxial surfaces were independent of each other, each having a different critical total water potential. The total water potential required to close the stomata on the last fully developed leaf were different at different stages of physiological development, decreasing as the plants grew older. The development of osmoregulation in wheat allows the closure of stomata during the vegetative stage at a high total water potential, but insures that stomata remain open from anthesis through the ear filling period to a lower total water potential.  相似文献   
2.
Summary The influence of the hydrogen-ion concentration on the growth and metabolism of a highly acid-resistant green alga, Chlorella ellipsoidea (strain Marburg St), was studied. Chlorella pyrenoidosa (Emerson strain) served as a normal control organism. Growth of Chlorella ellipsoidea occurs in the entire range from Ph 2.0 to Ph 10, whereas for Chlorella pyrenoidosa the limits were found to be Ph 3.5 and Ph 10. Respiration is much less sensitive to hydrogen-ion concentration in the acid-resistant as compared to the normal strain. Thus an increase in acidity from Ph 4.0 to Ph 2.0 increases the respiratory oxygen uptake by 120% in Chlorella pyrenoidosa and by 25% in Chlorella ellipsoidea. In addition, only the less resistant Chlorella pyrenoidosa shows an accumulation of nitrite in the dark in acid culture media, indicating a disturbance of the normal course of nitrate reduction under these conditions. On the other hand, the rate of photosynthesis of both organisms was found to be almost independent of acidity between Ph 4.0 and Ph 2.0. At the acid and alkaline limits of growth in both algae, an inhibition of cell division leads to an increase of cell size and dry weight per cell, frequently connected with the occurrence of bizarre giant cells. — In addition, adaptation phenomena were found to play a role in determining the acid limit of growth. Cells of Chlorella ellipsoidea, after inoculation from normal medium (Ph about 6) into a solution of Ph 2.0, begin growth at a high rate only after a lag of about two weeks. Cells grown previously in an acid medium, however, immediately resume growth upon inoculation into a medium of Ph 2.0. This adaptation involves a considerable reduction of cell size.  相似文献   
3.
4.
  总被引:7,自引:0,他引:7  
An In Vitro Microassay for Lymphotoxin (LT) is described. Target cell monolayers are established in the wells of a microtiter assay plate at a density of 100–500/well. Dilutions of Lymphotoxin containing medium are placed upon the target cell monolayers. The plates are sealed with a gas impervious film, and the cells are incubated for 24–48 hr. The cell numbers in each well are established initially, and after the incubation period. The percent destruction is based upon total cell counts of experimental wells compared to control wells. Comparison of the assay to the previously described assay, which is based upon ability of cells to incorporate 14C amino acids into protein, with several batches of LT, shows the microassay to be 25 × more sensitive than the latter. Other advantages and disadvantages of the assay system are also described.  相似文献   
5.

Purpose

Small injection ports for mice are increasingly used for drug testing or when administering contrast agents. Commercially available mini-ports are expensive single-use items that cause imaging-artifacts. We developed and tested an artifact-free, low-cost, vascular access mini-port (VAMP) for mice.

Procedures

Leakage testing of the VAMP was conducted with high speed bolus injections of different contrast agents. VAMP-induced artifacts were assessed using a micro-CT and a small animal MRI (9.4T) scanner ex vivo. Repeated contrast administration was performed in vivo.

Results

With the VAMP there was no evidence of leakage with repeated punctures, high speed bolus contrast injections, and drawing of blood samples. In contrast to the tested commercially available ports, the VAMP did not cause artifacts with MRI or CT imaging.

Conclusions

The VAMP is an alternative to commercially available mini-ports and has useful applications in animal research involving imaging procedures and contrast agent testing.  相似文献   
6.
We tested a general method for the identification of drug resistance loci in the trypanosomatid protozoan parasite Leishmania major. Genomic libraries in a multicopy episomal cosmid vector were transfected into susceptible parasites, and drug selections of these transfectant libraries yielded parasites bearing cosmids mediating resistance. Tests with two antifolates led to the recovery of cosmids encoding DHFR-TS or PTR1, two known resistance genes. Overexpression/selection using the toxic nucleoside tubercidin similarly yielded the TOR (toxic nucleoside resistance) locus, as well as a new locus (TUB2) conferring collateral hypersensitivity to allopurinol. Leishmania synthesize ergosterol rather than cholesterol, making this pathway attractive as a chemotherapeutic target. Overexpression/selection using the sterol synthesis inhibitors terbinafine (TBF, targeting squalene epoxidase) and itraconazole (ITZ, targeting lanosterol C(14)-demethylase) yielded nine new resistance loci. Several conferred resistance to both drugs; several were drug-specific, and two TBF-resistant cosmids induced hypersensitivity to ITZ. One TBF-resistant cosmid encoded squalene synthase (SQS1), which is located upstream of the sites of TBF and ITZ action in the ergosterol biosynthetic pathway. This suggests that resistance to "downstream" inhibitors can be mediated by increased expression of ergosterol biosynthetic intermediates. Our studies establish the feasibility of overexpression/selection in parasites and suggest that many Leishmania drug resistance loci are amenable to identification in this manner.  相似文献   
7.
PERIOD proteins are central components of the Drosophila and mammalian circadian clocks. The crystal structure of a Drosophila PERIOD (dPER) fragment comprising two PER-ARNT-SIM (PAS) domains (PAS-A and PAS-B) and two additional C-terminal α-helices (αE and αF) has revealed a homodimer mediated by intermolecular interactions of PAS-A with tryptophane 482 in PAS-B and helix αF. Here we present the crystal structure of a monomeric PAS domain fragment of dPER lacking the αF helix. Moreover, we have solved the crystal structure of a PAS domain fragment of the mouse PERIOD homologue mPER2. The mPER2 structure shows a different dimer interface than dPER, which is stabilized by interactions of the PAS-B β-sheet surface including tryptophane 419 (equivalent to Trp482dPER). We have validated and quantitatively analysed the homodimer interactions of dPER and mPER2 by site-directed mutagenesis using analytical gel filtration, analytical ultracentrifugation, and co-immunoprecipitation experiments. Furthermore we show, by yeast-two-hybrid experiments, that the PAS-B β-sheet surface of dPER mediates interactions with TIMELESS (dTIM). Our study reveals quantitative and qualitative differences between the homodimeric PAS domain interactions of dPER and its mammalian homologue mPER2. In addition, we identify the PAS-B β-sheet surface as a versatile interaction site mediating mPER2 homodimerization in the mammalian system and dPER-dTIM heterodimer formation in the Drosophila system.  相似文献   
8.
The Drosophila Mos1 element can be mobilized in species ranging from prokaryotes to protozoans and vertebrates, and the purified transposase can be used for in vitro transposition assays. In this report we developed a ‘mini-Mos1’ element and describe a number of useful derivatives suitable for transposon mutagenesis in vivo or in vitro. Several of these allow the creation and/or selection of tripartite protein fusions to a green fluorescent protein–phleomycin resistance (GFP-PHLEO) reporter/selectable marker. Such X-GFP-PHLEO-X fusions have the advantage of retaining 5′ and 3′ regulatory information and N- and C-terminal protein targeting domains. A Mos1 derivative suitable for use in transposon-insertion mediated linker insertion (TIMLI) mutagenesis is described, and transposons bearing selectable markers suitable for use in the protozoan parasite Leishmania were made and tested. A novel ‘negative selection’ approach was developed which permits in vitro assays of transposons lacking bacterial selectable markers. Application of this assay to several Mos1 elements developed for use in insects suggests that the large mariner pM[cn] element used previously in vivo is poorly active in vitro, while the Mos1-Act-EGFP transposon is highly active.  相似文献   
9.
We investigated if (1) dissolved compounds excreted by Phaeocystis globosa and (2) transparent exopolymer particles (TEP) formed from carbohydrates excreted into the water affect the feeding of nauplii and females of the calanoid copepod Temora longicornis during a P. globosa bloom. Copepod grazing on the diatom Thalassiosira weissflogii in the presence of these possible grazing deterrents was measured during three successive weeks of a mesocosm study, simulating the development of a P. globosa bloom. Our results demonstrate no indication for the presence of feeding deterrents in the dissolved phase, but a strong inhibitory effect of transparent exopolymer particles (TEP) on the consumption of algae by both nauplii and adult copepods. The inhibitory effect of TEP was connected to the accumulation of DOM during the progress of the bloom. We suggest that a reduction in the grazing pressure of zooplankton may increase the survival of the liberated single cells during disruption of colonies and allow seeding populations to persist. Furthermore, P. globosa reduces the trophic efficiency of the food web not only by withdrawal of its colonies from grazing but also by a relaxation of the grazing pressure on co-occurring phytoplankton and by alteration of the food web structure via TEP production.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号