首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   5篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   10篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   12篇
  2004年   7篇
  2003年   4篇
  2002年   8篇
  2001年   11篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
排序方式: 共有127条查询结果,搜索用时 6 毫秒
1.
The three-dimensional crystal structure of the DNA/RNA nonspecific endonuclease from Serratia marcescens was refined at the resolution of 1.07 A to R factor of 12.4% and Rfree factor of 15.3% using the anisotropic approximation. The structure includes 3924 non-hydrogen atoms, 715 protein-bound water molecules, and a Mg2+ ion in each binding site of each subunit of the nuclease homodimeric globular molecule. The 3D topological model of the enzyme was revealed, the inner symmetry of the monomers in its N- and C-termini was found, and the local environment of the magnesium cofactor in the nuclease active site was defined. Mg2+ ion was found to be bound to the Asn119 residue and surrounded by five associated water molecules that form an octahedral configuration. The coordination distances for the water molecules and the O delta 1 atom of Asn119 were shown to be within a range of 2.01-2.11 A. The thermal factors for the magnesium ion in subunits are 7.08 and 4.60 A2, and the average thermal factors for the surrounding water molecules are 11.14 and 10.30 A2, respectively. The region of the nuclease subunit interactions was localized, and the alternative side chain conformations were defined for 51 amino acid residues of the nuclease dimer.  相似文献   
2.
3.
Proteinase K, the extracellular serine endopeptidase (E.C. 3.4.21.14) from the fungus Tritirachium album limber, is homologous to the bacterial subtilisin proteases. The binding geometry of the synthetic inhibitor carbobenzoxy-Ala-Phechloromethyl Ketone to the active site of proteinase K was the first determined from a Fourier synthesis based on synchrotron X-ray diffraction data between 1.8 Å and 5.0 Å resolution. The protein inhibitor complexes was refined by restrained least-squares minimization with the data between 10.0 and 1.8 Å. The final R factor was 19.1% and the model contained 2,018 protein atoms, 28 inhibitors atoms, 125 water molecules, and two Ca2+ ions. The peptides portion of the inhibitor is bound to the active center of proteinase K by means of a three-stranded antiparallel pleated sheet, with the side chain of the phenylalanine located in the P1 site. Model building studies, with lysine replacing phenylalanine in the inhibitor, explain the relatively unspecific catalytic activity of the enzyme.  相似文献   
4.
Three-dimensional structure of proteinase K at 0.15-nm resolution   总被引:3,自引:0,他引:3  
The crystal and molecular structure of proteinase K was determined by X-ray diffraction data to 0.15-nm resolution. The enzyme belongs to the subtilisin family with an active-site catalytic triad Asp39--His69--Ser224 but is a representative of a subgroup with a free Cys73 close to and 'below' the active His69. Besides this Cys72, proteinase K has two disulfide bonds, Cys34--Cys123 and Cys178--Cys249, which contribute to the stability of the tertiary structure consisting of an extended central parallel beta-sheet decorated by six alpha-helices, three short antiparallel beta-sheets, 18 beta-turns and involving several internal, structurally important water molecules. Proteinase K exhibits two Ca2+-binding sites, one very strong and the other weak, which were the sites of the heavy atoms (Pb2+, Sm3+) used to solve the crystal structure. The weak binding site is liganded to the N and C termini, Thr16 and Asp260, and is only incompletely coordinated by oxygen ligands. The strong binding site is coordinated in the form of a pentagonal bipyramid with the side chain carboxylate of Asp200 and the C = O of Pro175 as apex, and C = O of Val177 and four water molecules in the equatorial plane. Upon removal of this Ca2+, proteinase K loses activity which is interpreted in terms of a local structural deformation involving the substrate-recognition site (Ser132--Gly136), probably associated with a cis----trans isomerization of cis Pro171. Several water molecules are located in the active site. One, W335, is positioned in the 'oxyanion hole' and is displaced by the C = O of the scissile peptide bond of the substrate, as indicated by crystallographic studies with peptide chloromethane inhibitors. Based on these experiments, a reaction mechanism is proposed where the peptide substrate forms a three-stranded antiparallel pleated sheet with the recognition site of proteinase K consisting of Ser132--Leu133--Gly134 on one side and Gly100--Ser101 on the other, followed by expulsion of the oxyanion hole water W335 and hydrolytic cleavage by the Asp39--His69--Serr224 triad. These latter residues display low thermal motion corresponding to well-defined geometry and are hardly accessible to solvent molecules, whereas the recognition-site amino acids are more flexible and partially exposed to solvent.  相似文献   
5.
Lactotransferrin is an iron-binding protein. It has been purified from buffalo colostrum. The purified lactotransferrin has been crystallized in 10% ethanol solution. The crystals are orthorhombic and the space group is P2(1)2(1)2(1) with unit cell dimensions a = 161.70 A, b = 155.75 A, c = 113.48 A. The asymmetric unit contains three molecules of the protein with a solvent content of about 59%. The crystals were stable in the X-ray beam and diffract beyond 3.5 A resolution. The native data have been collected and the structure determination is in progress.  相似文献   
6.
Kinesin spindle protein (KSP), an ATP‐dependent motor protein, plays an essential role in bipolar spindle formation during the mitotic phase (M phase) of the normal cell cycle. KSP has emerged as a novel target for antimitotic anticancer drug development. In this work, we synthesized a range of new biphenyl compounds and investigated their properties in vitro as potential antimitotic agents targeting KSP expression. Antiproliferation (MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide)) assays, combined with fluorescence‐assisted cell sorting (FACS) and Western blot studies analyzing cell‐cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Structural variants revealed that functionalization of biphenyl compounds with bulky aliphatic or aromatic groups led to a loss of activity. However, replacement of the urea group with a thiourea led to an increase in antiproliferative activity in selected cell lines. Further studies using confocal fluorescence microscopy confirmed that the most potent biphenyl derivative identified thus far, compound 7 , exerts its pharmacologic effect specifically in the M phase and induces monoaster formation. These studies confirm that chemical scope remains for improving the potency and treatment efficacy of antimitotic KSP inhibition in this class of biphenyl compounds.  相似文献   
7.
The three-dimensional crystal structure of the DNA/RNA nonspecific endonuclease from Serratia marcescenswas refined at the resolution of 1.07 Å to Rfactor of 12.4% and R freefactor of 15.3% using the anisotropic approximation. The structure includes 3924 non-hydrogen atoms, 715 protein-bound water molecules, and a Mg2+ion in each binding site of each subunit of the nuclease homodimeric globular molecule. The 3D topological model of the enzyme was revealed, the inner symmetry of the monomers in its N-and C-termini was found, and the local environment of the magnesium cofactor in the nuclease active site was defined. Mg2+ion was found to be bound to the Asn119 residue and surrounded by five associated water molecules that form an octahedral configuration. The coordination distances for the water molecules and the O1atom of Asn119 were shown to be within the range of 2.01–2.11 Å. The thermal factors for the magnesium ion in subunits are 7.08 and 4.60 Å2, and the average thermal factors for the surrounding water molecules are 11.14 and 10.30 Å2, respectively. The region of the nuclease subunit interactions was localized, and the alternative side chain conformations were defined for 51 amino acid residues of the nuclease dimer.  相似文献   
8.
This is the first structural evidence of alpha-tocopherol (alpha-TP) as a possible candidate against inflammation, as it inhibits phospholipase A2 specifically and effectively. The crystal structure of the complex formed between Vipera russelli phospholipase A2 and alpha-tocopherol has been determined and refined to a resolution of 1.8 A. The structure contains two molecules, A and B, of phospholipase A2 in the asymmetric unit, together with one alpha-tocopherol molecule, which is bound specifically to one of them. The phospholipase A2 molecules interact extensively with each other in the crystalline state. The two molecules were found in a stable association in the solution state as well, thus indicating their inherent tendency to remain together as a structural unit, leading to significant functional implications. In the crystal structure, the most important difference between the conformations of two molecules as a result of their association pertains to the orientation of Trp31. It may be noted that Trp31 is located at the mouth of the hydrophobic channel that forms the binding domain of the enzyme. The values of torsion angles (phi, psi, chi(1) and chi(2)) for both the backbone as well as for the side-chain of Trp31 in molecules A and B are -94 degrees, -30 degrees, -66 degrees, 116 degrees and -128 degrees, 170 degrees, -63 degrees, -81 degrees, respectively. The conformation of Trp31 in molecule A is suitable for binding, while that in B hinders the passage of the ligand to the binding site. Consequently, alpha-tocopherol is able to bind to molecule A only, while the binding site of molecule B contains three water molecules. In the complex, the aromatic moiety of alpha-tocopherol is placed in the large space at the active site of the enzyme, while the long hydrophobic channel in the enzyme is filled by hydrocarbon chain of alpha-tocopherol. The critical interactions between the enzyme and alpha-tocopherol are generated between the hydroxyl group of the six-membered ring of alpha-tocopherol and His48 N(delta1) and Asp49 O(delta1) as characteristic hydrogen bonds. The remaining part of alpha-tocopherol interacts extensively with the residues of the hydrophobic channel of the enzyme, giving rise to a number of hydrophobic interactions, resulting in the formation of a stable complex.  相似文献   
9.
Structural and functional characteristics were compared for wild-type nuclease from Serratia marcescens, which belongs to the family of DNA/RNA nonspecific endonucleases, its mutational forms, and the nuclease I-PpoI from Physarum polycephalum, which is a representative of the Cys-His box-containing subgroup of the superfamily of extremely specific intron-encoded homing DNases. Despite the lack of sequence homology and the overall different topology of the Serratia marcescens and I-PpoI nucleases, their active sites have a remarkable structural similarity. Both of them have a unique magnesium atom in the active site, which is a part of the coordinatively bonded water–magnesium complex involved in their catalytic acts. In the enzyme–substrate complexes, the Mg2+ ion is chelated by an Asp residue, coordinates two oxygen atoms of DNA, and stabilizes the transition state of the phosphate anion and 3"-OH group of the leaving nucleotide. A new mechanism of the phosphodiester bond cleavage, which is common for the Serratia marcescens and I-PpoI nucleases and differs from the known functioning mechanism of the restriction and homing endonucleases, was proposed. It presumes a His residue as a general base for the activation of a non-cluster water molecule at the nucleophilic in line displacement of the 3"-leaving group. A strained metalloenzyme–substrate complex is formed during hydrolysis and relaxes to the initial state after the reaction.  相似文献   
10.
The ability of viscum at different concentrations to modulate the respiratory burst in neutrophils, induced by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine was studied. This does not exclude the possibility that viscum can interact with the receptor of this peptide. The analysis of the primary structure of viscum revealed elements structurally analogous to the chemotactic peptide. It is assumed that viscum can exhibit the properties an antagonist of the receptor of N-formyl-methionyl-leucyl-phenylalanine, and the mechanism of action of viscum depends on its concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号