首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2015年   8篇
  2014年   2篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1989年   1篇
  1986年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
The chemical composition of surface waters of two Dutch moorland pools and of incident precipitation, was monitored from 1982 to 1990. For this period, sulfur and water budgets were calculated using a hydrochemical model developed for well-mixed non-stratifying lakes. Total atmospheric deposition of S decreased significantly after 1986 at both locations. A model describing the sulfur budget in terms of input, output and reduction/oxidation processes predicted a fast decrease of pool water SO4 2− concentrations after a decrease of atmospheric input. However, SO4 2− concentrations in the surface water was lowered only slightly or remained constant. Apparently a source within the lake caused the unexpectedly high SO4 2− concentrations. The possible supply of SO4 2− from the sediment through regulation by (K-)Al-SO4 containing minerals or desorption of SO4 2− from positively charged surfaces in the sediment was evaluated. Solubility calculations of pore water with respect to alunite, basaluminite and jurbanite indicated that SO4 2− concentration was not regulated by these minerals. It is suggested here (1) that desorption of SO4 2− from peaty sediments may account for the estimated SO4 2− supply provided that the adsorption complex is periodically recharged by partial oxidation of the upper bottom sediments and (2) that because of exposure of a part of the pool bottom to the atmosphere during dry summers and subsequent oxidation of reduced S, the amount of SO4 2− may be provided which complements the decreasing depositional SO4 2− input. In future research these two mechanisms need to be investigated.  相似文献   
2.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   
3.
Several models of activation mechanisms were proposed for G protein-coupled receptors (GPCRs), yet no direct methods exist for their elucidation. The availability of constitutively active mutants has given an opportunity to study active receptor conformations within acceptable limits using models such as the angiotensin II type 1 (AT1)1 receptor mutant N111G-hAT1 which displays an important constitutive activity. Recently, by using methionine proximity assay, we showed for the hAT1 receptor that TMD III, VI, and VII form the ligand-binding pocket of the C-terminal amino acid of an antagonistic AngII analogue. In the present contribution, we investigated whether the same residues would also constitute the ligand-binding contacts in constitutively activated mutant (CAM) receptors. For this purpose, the same Met mutagenesis strategy was carried out on the N111G double mutants. Analysis of 43 receptors mutants in the N111G-hAT1 series, photolabeled and CNBr digested, showed that there were only subtle structural changes between the wt-receptor and its constitutively active form.  相似文献   
4.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
5.
MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool‐season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri‐miR393a (Osa‐miR393a). We found that Osa‐miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat‐shock protein in comparison with wild‐type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.  相似文献   
6.
Aluminum tolerance was assessed in the moderately Al-tolerant wheat (Triticum aestivum L.) cultivar Chinese Spring and a set of ditelosomic lines derived from Chinese Spring. Three ditelosomic lines lacking chromosome arms 4DL, 5AS and 7AS, respectively, exhibited decreased Al tolerance relative to the euploid parent Chinese Spring based on reduced root growth in Al-containing solutions. The physiological basis of the reduced Al tolerance was investigated. Measurements by inductively coupled argon plasma mass spectroscopy of root apical Al accumulation demonstrated that two of these three lines had a decreased ability to exclude Al from the root apex, the site of Al phytotoxicity. As Al-induced malate exudation has been suggested to be an important physiological mechanism of Al tolerance in wheat, this parameter was quantified and malate exudation was shown to be smaller in all three deletion lines compared with Chinese Spring. These results suggest that the decreased Al tolerance in at least two of the three ditelosomic lines is due to the loss of different genes independently influencing a single Al-tolerance mechanism, rather than to the loss of genes encoding alternative Al-tolerance mechanisms. Received: 3 July 2000 / Accepted: 9 August 2000  相似文献   
7.
Nitric oxide (NO) is suggested to play a role in liver injury elicited by acetaminophen (APAP). Hepatic microcirculatory dysfunction also is reported to contribute to the development of the injury. As a result, the role of NO in hepatic microcirculatory alterations in response to APAP was examined in mice by in vivo microscopy. A selective inducible NO synthase (iNOS) inhibitor,l-N6-(1-iminoethyl)-lysine (L-NIL), or a nonselective NOS inhibitor, NG-nitro-l-arginine methyl ester (L-NAME), was intraperitoneally administered to animals 10 min before APAP gavage. L-NIL suppressed raised alanine aminotransferase (ALT) values 6 h after APAP, whereas L-NAME increased those 1.7-fold. Increased ALT levels were associated with hepatic expression of iNOS. L-NIL, but not L-NAME, reduced the expression. APAP caused a reduction (20%) in the numbers of perfused sinusoids. L-NIL restored the sinusoidal perfusion, but L-NAME was ineffective. APAP increased the area occupied by infiltrated erythrocytes into the extrasinusoidal space. L-NIL tended to minimize this infiltration, whereas L-NAME further enhanced it. APAP caused an increase (1.5-fold) in Kupffer cell phagocytic activity. This activity in response to APAP was blunted by L-NIL, whereas L-NAME further elevated it. L-NIL suppressed APAP-induced decreases in hepatic glutathione levels. These results suggest that NO derived from iNOS contributes to APAP-induced parenchymal cell injury and hepatic microcirculatory disturbances. L-NIL exerts preventive effects on the liver injury partly by inhibiting APAP bioactivation. In contrast, NO derived from constitutive isoforms of NOS exerts a protective role in liver microcirculation against APAP intoxication and thereby minimizes liver injury.  相似文献   
8.
The serotonin neural system originates from ten nuclei in the mid- and hindbrain regions. The cells of the rostral nuclei project to almost every area of the forebrain, including the hypothalamus, limbic regions, basal ganglia, thalamic nuclei, and cortex. The caudal nuclei project to the spinal cord and interact with numerous autonomic and sensory systems. This article reviews much of the available literature from basic research and relevant clinical research that indicates that ovarian steroid hormones, estrogens and progestins, affect the function of the serotonin neural system. Experimental results in nonhuman primates from this laboratory are contrasted with studies in rodents and humans. The sites of action of ovarian hormones on the serotonin neural system include effects within serotonin neurons as well as effects on serotonin afferent neurons and serotonin target neurons. Therefore, information on estrogen and progestin receptor-containing neurons was synthesized with information on serotonin afferent and efferent circuits. The ability of estrogens and progestins to alter the function of the serotonin neural system at various levels provides a cellular mechanism whereby ovarian hormones can impact mood, cognition, pain, and numerous other autonomic functions.  相似文献   
9.
10.
While there is currently intense effort to examine the 13C signal of CO2 evolved in the dark, less is known on the isotope composition of day‐respired CO2. This lack of knowledge stems from technical difficulties to measure the pure respiratory isotopic signal: day respiration is mixed up with photorespiration, and there is no obvious way to separate photosynthetic fractionation (pure ci/ca effect) from respiratory effect (production of CO2 with a different δ13C value from that of net‐fixed CO2) at the ecosystem level. Here, we took advantage of new simple equations, and applied them to sunflower canopies grown under low and high [CO2]. We show that whole mesocosm‐respired CO2 is slightly 13C depleted in the light at the mesocosm level (by 0.2–0.8‰), while it is slightly 13C enriched in darkness (by 1.5–3.2‰). The turnover of the respiratory carbon pool after labelling appears similar in the light and in the dark, and accordingly, a hierarchical clustering analysis shows a close correlation between the 13C abundance in day‐ and night‐evolved CO2. We conclude that the carbon source for respiration is similar in the dark and in the light, but the metabolic pathways associated with CO2 production may change, thereby explaining the different 12C/13C respiratory fractionations in the light and in the dark.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号