首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1983年   1篇
  1963年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Cross-striated muscles of frogs and rats were fixed in 3.3 per cent lead nitrate solution. Frozen sections 30 micra thick were mounted in different media and observed by polarization microscopy. The subneural apparatus of myoneural junctions exhibits a strong birefringence in these sections. Birefringence is exerted by a highly organized lipoprotein framework (postsynaptic material) which builds up the "organites" (junctional folds) of the postsynaptic membrane. Synaptic cholinesterase is closely associated with this material. Freezing and/or formalin fixation results in a destruction of the molecular organization of the postsynaptic material, but does not influence the synaptic enzyme activity. It is hypothesized from this study that the junctional folds (postsynaptic "organites") consist of regularly arranged, sheet-like lamellar micellae in the frog and of less regular, mainly radially arranged submicroscopic units in the rat. The micellar organization as revealed by polarization analysis is in good agreement with the electron microscopic findings reported in the literature. Intramicellar protein molecules of the resting postsynaptic membrane are arranged longitudinally, lipids transversely. Supramaximal stimulation or treatment with acetylcholine + eserine results in a disorganization of proteins and a rearrangement of lipids. Denervation results in a rearrangement of lipids without any significant alterations of proteins. All these functional stresses influence only the molecular and not the micellar structure of the membrane. The function of the organized lipoprotein framework as an acetylcholine receptor is suggested.  相似文献   
2.
This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified.  相似文献   
3.
4.

Background

The Differences of Sex Development network (DSDnet) aims to establish interactive relationships between clinicians, scientists, support groups and people with a difference of sex development (DSD) to improve the overall care for people affected by such condition. DSDnet has hosted three Training Schools (TSs) in Ghent, Bologna and Budapest between 2015 and 2017 with the primary purpose of providing multidisciplinary training to young professionals and encouraging ongoing activity in the field of DSD. The aim of our study was to evaluate the success and long-term effect effectiveness of these three TSs.

Methods and results

Eighty-seven trainees (70 women, 17 men) attended one of three TSs. The distribution of trainees according to their professional field was: 47 (54.0%) from Pediatrics/Endocrinology, 13 (14.9%) from Biology/Genetics, 12 (13.8%) from Psychology/Psychiatry and 15 (17.2%) from Surgical Professions. All trainees were asked to complete an evaluation form on the last day of the TS to gain feedback on how to improve the next one. A further survey was sent at the end of 2017 to provide information about the overall long-term impact of the TSs. Seventy-eight (89.7%) trainees completed evaluation forms at the end of the respective TSs. Replies to the subsequent survey were received from 76 (87.4%) of trainees. A total of 72/76 (94.7%) responders reported that they continue to be active in the field of DSD. The vast majority (64/68, 94.1%) reported that the TSs had enlarged their professional networks. Among the 76 respondent trainees, 11.8% (n?=?9) had applied for a research grant and 10.5% (n?=?8) had received a fellowship related to DSD since their TS attendance.

Conclusions

According to our results, the majority of TS participants continue to be active in the field of DSD and have enlarged their professional networks following participation at the TS. These findings indicate the need of this type of educational program and justify ongoing efforts to provide postgraduate multidisciplinary training in rare diseases such as DSD.
  相似文献   
5.
Motor proteins display widely different stepping patterns as they move on microtubule tracks, from the deterministic linear or helical motion performed by the protein kinesin to the uncoordinated random steps made by dynein. How these different strategies produce an efficient navigation system needed to ensure correct cellular functioning is still unclear. Here, we show by numerical simulations that deterministic and random motor steps yield different outcomes when random obstacles decorate the microtubule tracks: kinesin moves faster on clean tracks but its motion is strongly hindered on decorated tracks, while dynein is slower on clean tracks but more efficient in avoiding obstacles. Further simulations indicate that dynein’s advantage on decorated tracks is due to its ability to step backwards. Our results explain how different navigation strategies are employed by the cell to optimize motor driven cargo transport.  相似文献   
6.
Expression of foreign proteins in chloroplasts has become an important field of plant genetic engineering. Optimized codon usage is generally thought to increase translational efficiency, but high speed translation of codon bias-adjusted mRNAs can also result in protein misfolding due to a lack of rare codons. In order to analyze the effect of rare codons on a native chloroplast protein in vivo, we modified the D1 subunit of photosystem II by fusing small peptides with different codons into a loop region which tolerates insertions without loss of function. Because of its high-turnover properties, the D1 protein represents an excellent test object to investigate the impact of rare codons on its translation. We choose codons for amino acids Arg, Leu, Ser, Ala and Gly which are rarely used and compared translation of the modified D1 proteins with the respective mutant proteins containing insertions with frequently used codons. Our data indicate that only rare Arg codons drastically affect synthesis of the D1 protein and cluster of rare Ser-codon can induce strategic ribosomal pausing sites.  相似文献   
7.
Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to oxidative damage in the eukaryotic/cyanobacterial proteins compared to their bacterial orthologs. These results led us to hypothesize an archaean atmosphere less challenging in terms of ionizing radiation than the present one.  相似文献   
8.
Here we show that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes unc-51/atg1 and bec-1/atg6/beclin1 results in small body size without affecting cell number. Furthermore, loss-of-function mutations in unc-51 and bec-1 suppress the giant phenotype of mutant animals with aberrant insulin-like growth factor-1 (insulin/IGF-1) or transforming growth factor-beta (TGF-beta) signaling. This function for unc-51 and bec-1 in cell size control and their interaction with these two growth modulatory pathways may represent a link between the hormonal and nutritional regulation of cell growth.  相似文献   
9.
Regulating the stability of microtubule (MT)-kinetochore attachments is fundamental to avoiding mitotic errors and ensuring proper chromosome segregation during cell division. Although biochemical factors involved in this process have been identified, their mechanics still need to be better understood. Here we introduce and simulate a mechanical model of MT-kinetochore interactions in which the stability of the attachment is ruled by the geometrical conformations of curling MT-protofilaments entangled in kinetochore fibrils. The model allows us to reproduce, with good accuracy, in vitro experimental measurements of the detachment times of yeast kinetochores from MTs under external pulling forces. Numerical simulations suggest that geometrical features of MT-protofilaments may play an important role in the switch between stable and unstable attachments.  相似文献   
10.
Dendritic ion channels play a critical role in shaping synaptic input and are fundamentally important for synaptic integration and plasticity. In the hippocampal region CA1, somato-dendritic gradients of AMPA receptors and the hyperpolarization-activated cation conductance (Ih) counteract the effects of dendritic filtering on the amplitude, time-course, and temporal integration of distal Schaffer collateral (SC) synaptic inputs within stratum radiatum (SR). While ion channel gradients in CA1 distal apical trunk dendrites within SR have been well characterized, little is known about the patterns of ion channel expression in the distal apical tuft dendrites within stratum lacunosum moleculare (SLM) that receive distinct input from the entorhinal cortex via perforant path (PP) axons. Here, we measured local ion channels densities within these distal apical tuft dendrites to determine if the somato-dendritic gradients of Ih and AMPA receptors extend into distal tuft dendrites. We also determined the densities of voltage-gated sodium channels and NMDA receptors. We found that the densities of AMPA receptors, Ih, and voltage-gated sodium channels are similar in tuft dendrites in SLM when compared with distal apical dendrites in SR, while the ratio of NMDA receptors to AMPA receptors increases in tuft dendrites relative to distal apical dendrites within SR. These data indicate that the somato-dendritic gradients of Ih and AMPA receptors in apical dendrites do not extend into the distal tuft, and the relative densities of voltage-gated sodium channels and NMDA receptors are poised to support nonlinear integration of correlated SC and PP input.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号