首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   14篇
  136篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   14篇
  2011年   7篇
  2010年   3篇
  2009年   7篇
  2008年   1篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1969年   1篇
  1874年   1篇
排序方式: 共有136条查询结果,搜索用时 18 毫秒
1.
2.

Background

Cross-sectional studies show a strong association between chronic kidney disease and apparent treatment-resistant hypertension, but the longitudinal association of the rate of kidney function decline with the risk of resistant hypertension is unknown.

Methods

The population-based Three-City included 8,695 participants older than 65 years, 4265 of them treated for hypertension. We estimated the odds ratios (OR) of new-onset apparent treatment-resistant hypertension, defined as blood pressure ≥ 140/90 mmHg despite use of 3 antihypertensive drug classes or ≥ 4 classes regardless of blood pressure, associated with the mean estimated glomerular filtration rate (eGFR) level and its rate of decline over 4 years, compared with both controlled hypertension and uncontrolled nonresistant hypertension with ≤ 2 drugs. GFR was estimated with three different equations.

Results

Baseline prevalence of apparent treatment-resistant hypertension and of controlled and uncontrolled nonresistant hypertension, were 6.5%, 62.3% and 31.2%, respectively. During follow-up, 162 participants developed apparent treatment-resistant hypertension. Mean eGFR decline with the MDRD equation was 1.5±2.9 mL/min/1.73 m² per year: 27.7% of the participants had an eGFR ≥3 and 10.1% ≥ 5 mL/min/1.73 m² per year. After adjusting for age, sex, obesity, diabetes, and cardiovascular history, the ORs for new-onset apparent treatment-resistant hypertension associated with a mean eGFR level, per 15 mL/min/1.73m² drop, were 1.23 [95% confidence interval 0.91–1.64] compared to controlled hypertension and 1.10 [0.83–1.45] compared to uncontrolled nonresistant hypertension; ORs associated with a decline rate ≥ 3 mL/min/1.73m² per year were 1.89 [1.09–3.29] and 1.99 [1.19–3.35], respectively. Similar results were obtained when we estimated GFR with the CKDEPI and the BIS1 equations. ORs tended to be higher for an eGFR decline rate ≥ 5 mL/min/1.73m² per year.

Conclusion

The speed of kidney function decline is associated more strongly than kidney function itself with the risk of apparent treatment-resistant hypertension in the elderly.  相似文献   
3.
A novel method for the quantitative determination of gibberellic acid in fermentation broths has been developed. It is based on the kinetic of the reaction of conversion of gibberellic acid to gibberellenic acid. The method is simple, reliable, faster than most of methods known, and free of the interferences which commonly affect spectrophotometric methods currently in use. Its threshold sensitivity is 0.1 g and its accuracy is greater than 97% for concentrations of gibberellic acid ranging from 0.1 to 1 g l(-1).  相似文献   
4.
A range of intracellular NADH availability was achieved by combining external and genetic strategies. The effect of these manipulations on the distribution of metabolites in Escherichia coli was assessed in minimal and complex medium under anoxic conditions. Our in vivo system to increase intracellular NADH availability expressed a heterologous NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii in E. coli. The heterologous FDH pathway converted 1 mol formate into 1 mol NADH and carbon dioxide, in contrast to the native FDH where cofactor involvement was not present. Previously, we found that this NADH regeneration system doubled the maximum yield of NADH from 2 mol to 4 mol NADH/mol glucose consumed. In the current study, we found that yields of greater than 4 mol NADH were achieved when carbon sources more reduced than glucose were combined with our in vivo NADH regeneration system. This paper demonstrates experimentally that different levels of NADH availability can be achieved by combining the strategies of feeding the cells with carbon sources which have different oxidation states and regenerating NADH through the heterologous FDH pathway. The general trend of the data is substantially similar for minimal and complex media. The NADH availability obtained positively correlates with the proportion of reduced by-products in the final culture. The maximum theoretical yield for ethanol is obtained from glucose and sorbitol in strains overexpressing the heterologous FDH pathway.  相似文献   
5.
Previous studies have shown that high-level (300-fold normal) cardiac overexpression of A1-adenosine receptors (A1-ARs) in transgenic (TG) mice protects isolated hearts against ischemia-reperfusion injury. However, this high level of overexpression is associated with bradycardia and increased incidence of arrhythmia during ischemia in intact mice, which interfered with studies to determine whether this line of TG mice might also be protected against myocardial infarction (MI) in vivo. For these studies, we therefore selected a line of TG mice that overexpresses the A1-AR at more moderate levels (30-fold normal), which affords cardioprotection in the isolated heart while minimizing bradycardia and arrhythmia during ischemia in intact mice. Wild-type (WT; n = 10) and moderate-level A1-AR TG (n = 10) mice underwent 45 min of left anterior descending coronary artery occlusion, followed by 24-h reperfusion. Infarct size and region at risk were determined by triphenyltetrazolium chloride and phthalo blue staining, respectively. Infarct size (% region at risk) in WT mice was 52 +/- 3%, whereas overexpression of A1-ARs in the TG mice markedly reduced infarct size to 31 +/- 3% (P < 0.05). Furthermore, contractile function (left ventricular ejection fraction) as determined by cardiac magnetic resonance imaging 24 h after MI was better preserved in TG vs. WT mice. Cardiac overexpression of A1-ARs reduces infarct size by 40% and preserves cardiac function in intact mice after MI.  相似文献   
6.
It is generally known that cofactors play a major role in the production of different fermentation products. This paper is part of a systematic study that investigates the potential of cofactor manipulations as a new tool for metabolic engineering. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ and producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. We have previously investigated a genetic means of increasing the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase and have demonstrated that this manipulation provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically (Berríos-Rivera et al., 2002, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229). The current work explores further the effect of substituting the native cofactor-independent formate dehydrogenase (FDH) by an NAD(+)-dependent FDH from Candida boidinii on the NAD(H/+) levels, NADH/NAD+ ratio, metabolic fluxes and carbon-mole yields in Escherichia coli under anaerobic chemostat conditions. Overexpression of the NAD(+)-dependent FDH provoked a significant redistribution of both metabolic fluxes and carbon-mole yields. Under anaerobic chemostat conditions, NADH availability increased from 2 to 3 mol NADH/mol glucose consumed and the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol to acetate ratio and a decrease in the flux to lactate. It was also found that the NADH/NAD+ ratio should not be used as a sole indicator of the oxidation state of the cell. Instead, the metabolic distribution, like the Et/Ac ratio, should also be considered because the turnover of NADH can be fast in an effort to achieve a redox balance.  相似文献   
7.
Muscle hypertrophy during resistance training is reportedly increased by creatine supplementation. Having previously failed to find an anabolic effect on muscle protein turnover at rest, either fed or fasted, we have now examined the possibility of a stimulatory effect of creatine in conjunction with acute resistance exercise. Seven healthy men (body mass index, 23 +/- 2 kg/m2, 21 +/- 1 yr, means +/- SE) performed 20 x 10 repetitions of leg extension-flexion at 75% one-repetition maximum in one leg, on two occasions, 4 wk apart, before and after ingesting 21 g/day creatine for 5 days. The subjects ate approximately 21 g maltodextrin + 6 g protein/h for 3 h postexercise. We measured incorporation of [1-13C]leucine into quadriceps muscle proteins in the rested and exercised legs. Leg protein breakdown (as dilution of [2H5]phenylalanine) was also assessed in the exercised and rested leg postexercise. Creatine supplementation increased muscle total creatine by approximately 21% (P < 0.01). Exercise increased the synthetic rates of myofibrillar and sarcoplasmic proteins by two- to threefold (P < 0.05), and leg phenylalanine balance became more positive, but creatine was without any anabolic effect.  相似文献   
8.
9.
10.
Taxon-specific epsilon-crystallin (epsilonC) from duck eye lens is identical to duck heart muscle lactate dehydrogenase. It forms a dimer of dimers with a dissociation constant of 2.2 x 10-7 M, far beyond the value observed for other vertebrate lactate dehydrogenases. Comparing the characteristics of wild-type epsilon-crystallin with those of three mutants, G115N, G119F and 115N/119F, representing the only significant peripheral sequence variations between duck epsilonC and chicken or pig heart muscle lactate dehydrogenase, no significant conformational differences are detectable. Regarding the catalytic properties, the Michaelis constant of the double mutant 115N/119F for pyruvate is found to be decreased; for wild-type enzyme, the effect is overcompensated by the high expression level of epsilonC in the eye lens. As taken from spectral analysis of the guanidine-induced and temperature-induced denaturation transitions, epsilonC in its dimeric state is relatively unstable, whereas the native tetramer exhibits the high intrinsic stability characteristic of common vertebrate heart and muscle lactate dehydrogenases. The denaturation mechanism of epsilonC is complex and only partially reversible. In the case of thermal unfolding, the predominant side reaction competing with the reconstitution of the native state is the kinetic partitioning between proper folding and aggregation. alpha-Crystallin, the major molecular chaperone in the eye lens, inhibits the aggregation of epsilonC by trapping the misfolded protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号