首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   19篇
  国内免费   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   13篇
  2014年   12篇
  2013年   13篇
  2012年   20篇
  2011年   19篇
  2010年   7篇
  2009年   15篇
  2008年   21篇
  2007年   19篇
  2006年   24篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   11篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1994年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1980年   2篇
  1977年   2篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有277条查询结果,搜索用时 390 毫秒
1.
Polyphosphoinositides are an important class of lipid that recruit specific effector proteins to organelle membranes. One member, phosphatidylinositol 4-phosphate (PtdIns4P) has been localized to Golgi membranes based on the distribution of lipid binding modules from PtdIns4P effector proteins. However, these probes may be biased by additional interactions with other Golgi-specific determinants. In this paper, we derive a new PtdIns4P biosensor using the PtdIns4P binding of SidM (P4M) domain of the secreted effector protein SidM from the bacterial pathogen Legionella pneumophila. PtdIns4P was necessary and sufficient for localization of P4M, which revealed pools of the lipid associated not only with the Golgi but also with the plasma membrane and Rab7-positive late endosomes/lysosomes. PtdIns4P distribution was determined by the localization and activities of both its anabolic and catabolic enzymes. Therefore, P4M reports a wider cellular distribution of PtdIns4P than previous probes and therefore will be valuable for dissecting the biological functions of PtdIns4P in its assorted membrane compartments.  相似文献   
2.
3.
The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole‐animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal‐related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection.  相似文献   
4.
This study examined the size-dependent scavenging behaviour of black bullheads Ameiurus melas under laboratory conditions, using common bleak Alburnus alburnus and pumpkinseed Lepomis gibbosus carcasses. Video camera observations showed that the activity of A. melas was higher at night, but substantial daytime activity was also recorded. Larger A. melas were more active than their smaller conspecifics, especially at night. All size classes exhibited a well-defined sequence of consuming different parts of the carcasses independent of size, but larger individuals tended to consume carcasses more efficiently. Carcasses of the softer-bodied A. alburnus were consumed more readily than those of the bonier L. gibbosus, independent of size. This scavenging behaviour of A. melas might facilitate the invasion success of the species.  相似文献   
5.
Human male germ cell-associated kinase (hMAK) is an androgen-inducible gene in prostate epithelial cells, and it acts as a coactivator of androgen receptor signaling in prostate cancer. The 3D structure of the hMAK kinase was modeled based on the crystal structure of CDK2 kinase using comparative modeling methods, and the ATP-binding site was characterized. We have collected five inhibitors of hMAK from the literature and docked into the ATP-binding site of the kinase domain. Solvated interaction energies (SIE) of inhibitor binding are calculated from the molecular dynamics simulations trajectories of protein–inhibitor complexes. The contribution from each active site residue in hMAK toward inhibitor binding revealed the nature and extent of interactions between inhibitors and individual residues. The main chain atoms of Met79 invariably form hydrogen bonds with all five inhibitors. The amino acids Leu7, Val15, and Leu129 stabilize the inhibitors via CH–pi interactions. The Asp140 in the active site and Glu77 in hinge region show characteristic hydrogen bonding interactions with inhibitors. From SIE, the residue-wise interactions revealed the nature of non-bonding contacts and modifications required to increase the inhibitor activity. Our work provides 3D model structure of hMAK and molecular basis for the mechanisms of hMAK inhibition at atomic level that aid in designing new potent inhibitors.  相似文献   
6.
STIM1, a recently identified endoplasmic reticulum (ER) protein, rapidly translocates to a plasma membrane-adjacent ER compartment upon depletion of the ER Ca(2+) stores. Here we use a novel means, namely a chemically inducible bridge formation between the plasma and ER membranes, to highlight the plasma membrane-adjacent ER compartment and show that this is the site where STIM1 and its Ca(2+) channel partner, Orai1, form a productive interaction upon store depletion. By changing the length of the linkers connecting the plasma and ER membranes, we show that Orai1 requires a larger space than STIM1 between the two membranes. This finding suggests that Orai1 is part of a larger macromolecular cluster with an estimated 11-14-nm protrusion to the cytoplasm, whereas the cytoplasmic domain of STIM1 fits in a space calculated to be less than 6 nm. We finally show that agonist-induced translocation of STIM1 is rapidly reversible and only partially affects STIM1 in the juxtanuclear ER compartment. These studies are the first to detect juxtaposed areas between the ER and the plasma membrane in live cells, revealing novel details of STIM1-Orai1 interactions.  相似文献   
7.
Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10–20% of non-paired substitutions as well, underscoring the importance of the process.  相似文献   
8.
Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) has been proposed to act as a second messenger to recruit regulatory proteins to the plasma membrane via their pleckstrin homology (PH) domains. The PH domain of Bruton's tyrosine kinase (Btk), which is mutated in the human disease X-linked agammaglobulinemia, has been shown to interact with PI(3,4,5)P3 in vitro. In this study, a fusion protein containing the PH domain of Btk and the enhanced green fluorescent protein (BtkPH-GFP) was constructed and utilized to study the ability of this PH domain to interact with membrane inositol phospholipids inside living cells. The localization of expressed BtkPH-GFP in quiescent NIH 3T3 cells was indistinguishable from that of GFP alone, both being cytosolic as assessed by confocal microscopy. In NIH 3T3 cells coexpressing BtkPH-GFP and the epidermal growth factor receptor, activation of epidermal growth factor or endogenous platelet-derived growth factor receptors caused a rapid (<3 min) translocation of the cytosolic fluorescence to ruffle-like membrane structures. This response was not observed in cells expressing GFP only and was completely inhibited by treatment with the PI 3-kinase inhibitors wortmannin and LY 292004. Membrane-targeted PI 3-kinase also caused membrane localization of BtkPH-GFP that was slowly reversed by wortmannin. When the R28C mutation of the Btk PH domain, which causes X-linked agammaglobulinemia, was introduced into the fluorescent construct, no translocation was observed after stimulation. In contrast, the E41K mutation, which confers transforming activity to native Btk, caused significant membrane localization of BtkPH-GFP with characteristics indicating its possible binding to PI(4,5)P2. This mutant, but not wild-type BtkPH-GFP, interfered with agonist-induced PI(4,5)P2 hydrolysis in COS-7 cells. These results show in intact cells that the PH domain of Btk binds selectively to 3-phosphorylated lipids after activation of PI 3-kinase enzymes and that losing such binding ability or specificity results in gross abnormalities in the function of the enzyme. Therefore, the interaction with PI(3,4,5)P3 is likely to be an important determinant of the physiological regulation of Btk and can be utilized to visualize the dynamics and spatiotemporal organization of changes in this phospholipid in living cells.  相似文献   
9.
Previous reports have suggested that protein disulfide isomerases (PDIs) have transglutaminase (TGase) activity. The structural basis of this reaction has not been revealed. We demonstrate here that Caenorhabditis elegans PDI-3 can function as a Ca(2+)-dependent TGase in assays based on modification of protein- and peptide-bound glutamine residues. By site-directed mutagenesis the second cysteine residue of the -CysGlyHisCys- motif in the thioredoxin domain of the enzyme protein was found to be the active site of the transamidation reaction and chemical modification of histidine in their motif blocked TGase activity.  相似文献   
10.
Human ovarian follicular fluids and sera obtained from women pre-treated for in vitro fertilization (IVF) were investigated by capillary zone electrophoresis. Comparison of the matching physiological liquids showed substantial differences in the electrophoretic patterns. Significant decrease in the alpha(1)- and gamma-fractions of follicular fluids of every woman were observed, whereas other fractions of the samples did not show such alterations. Since follicular fluid is a product of both, secretion by granulosa cells and diffusion from the theca capillaries, we can assume that the forced production of follicular fluid upon hormone stimulation (with gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH) and corionic gonadotroph hormone (hCG)) may play role in the uneven presence of the proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号