首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有23条查询结果,搜索用时 46 毫秒
1.
2.
3.
Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available.  相似文献   
4.
5.
The SNPWave marker system, based on SNPs between the reference accessions Colombia-0 and Landsberg erecta (Ler), was used to distinguish a set of 92 Arabidopsis accessions from various parts of the world. In addition, we used these markers to genotype three new recombinant inbred line populations for Arabidopsis, having Ler as a common parent that was crossed with the accessions Antwerp-1, Kashmir-2, and Kondara. The benefit of using multiple populations that contain many similar markers and the fact that all markers are linked to the physical map of Arabidopsis facilitates the quantitative comparison of maps. Flowering-time variation was analyzed in the three recombinant inbred line populations. Per population, four to eight quantitative trait loci (QTL) were detected. The comparison of the QTL positions related to the physical map allowed the estimate of 12 different QTL segregating for flowering time for which Ler has an allele different from one, two, or three of the other accessions.  相似文献   
6.
Phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6) is the most abundant P-containing compound in plants, and an important anti-nutritional factor, due to its ability to complex essential micro-nutrients, e.g. iron and zinc. Analysis of natural variation for InsP6 and Pi accumulation in seeds and leaves for a large number of accessions of Arabidopsis thaliana, using a novel method for InsP6 detection, revealed a wide range of variation in InsP6 and Pi levels, varying from 7.0 mg to 23.1 mg of InsP6 per gram of seed. Quantitative trait locus (QTL) analysis of InsP6 and Pi levels in seeds and leaves, using an existing recombinant inbred line population, was performed in order to identify a gene(s) that is (are) involved in the regulation of InsP6 accumulation. Five genomic regions affecting the quantity of the InsP6 and Pi in seeds and leaves were identified. One of them, located on top of chromosome 3, affects all four traits. This QTL appears as the major locus responsible for the observed variation in InsP6 and Pi contents in the L er/Cvi RIL population; the L er allele decreases the content of both InsP6 and Pi in seeds and in leaves. The InsP6/Pi locus was further fine-mapped to a 99-kb region, containing 13 open reading frames. The maternal inheritance of the QTL and the positive correlation between InsP6 and total Pi levels both in seeds and in leaves indicate that the difference in InsP6 level between L er and Cvi is likely to be caused by a difference in transport rather than by an alteration in the biosynthesis. Therefore, we consider the vacuolar membrane ATPase subunit G, located in the region of interest, as the most likely candidate gene for InsP6/Pi.  相似文献   
7.
AIMS: The objective of this study was to develop a Nucleic Acid Sequence Based Amplification (NASBA) assay, targeting 16S rRNA sequences, for direct detection of viable cells of Ralstonia solanacearum, the causal organism of bacterial wilt. The presence of intact 16S rRNA is considered to be a useful indicator for viability, as a rapid degradation of this target molecule is found upon cell death. METHODS AND RESULTS: It was demonstrated by RNase treatment of extracted nucleic acids from R. solanacearum cell suspensions that NASBA exclusively detected RNA and not DNA. The ability of NASBA to assess viability was demonstrated in two sets of experiments. In the first experiment, viable and chlorine-killed cells of R. solanacearum were added to a potato tuber extract and tested in NASBA and PCR. In NASBA, only extracts spiked with viable cells resulted in a specific signal after Northern blot analysis, whereas in PCR, targeting 16S rDNA sequences, both extracts with viable and killed cells resulted in specific signals. In the second experiment, the survival of R. solanacearum on metal strips was studied using NASBA, PCR-amplification and dilution plating on the semiselective medium SMSA. A positive correlation was found between NASBA and dilution plating detecting culturable cells, whereas PCR-amplification resulted in positive reactions also long after cells were dead. The detection level of NASBA for R. solanacearum added to potato tuber extracts was determined at 104 cfu per ml of extract, equivalent to 100 cfu per reaction. With purified RNA a detection level of 104 rRNA molecules was found. This corresponds with less than one bacterial cell, assuming that a metabolically active cell contains ca 105 copies of rRNA. Preliminary experiments demonstrated the potential of NASBA to detect R. solanacearum in naturally infected potato tuber extracts. CONCLUSIONS: NASBA specifically amplifies RNA from viable cells of R. solanacearum even present in complex substrates at a level of 100 cfu per reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: The novel NASBA assay will be particularly valuable for detection of R. solanacearum in ecological studies in which specifically viable cells should be determined.  相似文献   
8.
9.
In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. Here we introduce the development of a genomewide coverage near-isogenic line (NIL) population of Arabidopsis thaliana, by introgressing genomic regions from the Cape Verde Islands (Cvi) accession into the Landsberg erecta (Ler) genetic background. We have empirically compared the QTL mapping power of this new population with an already existing RIL population derived from the same parents. For that, we analyzed and mapped QTL affecting six developmental traits with different heritability. Overall, in the NIL population smaller-effect QTL than in the RIL population could be detected although the localization resolution was lower. Furthermore, we estimated the effect of population size and of the number of replicates on the detection power of QTL affecting the developmental traits. In general, population size is more important than the number of replicates to increase the mapping power of RILs, whereas for NILs several replicates are absolutely required. These analyses are expected to facilitate experimental design for QTL mapping using these two common types of segregating populations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号