首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   4篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
ClC-5 is the Cl- channel that is mutated in Dent's disease, an X-chromosome-linked disease characterized by low molecular weight proteinuria, hypercalciuria, and kidney stones. It is predominantly expressed in endocytically active renal proximal cells. We investigated whether this Cl- channel could also be expressed in intestinal tissues that have endocytotic machinery. ClC-5 mRNA was detected in the rat duodenum, jejunum, ileum, and colon. Western blot analyses revealed the presence of the 83-kDa ClC-5 protein in these tissues. Indirect immunofluorescence studies showed that ClC-5 was mainly concentrated in the cytoplasm above the nuclei of enterocytes and colon cells. ClC-5 partially colocalized with the transcytosed polymeric immunoglobulin receptor but was not detectable together with the brush-border-anchored sucrase isomaltase. A subfractionation of vesicles obtained by differential centrifugation showed that ClC-5 is associated with the vacuolar 70-kDa H+-ATPase and the small GTPases rab4 and rab5a, two markers of early endosomes. Thus these results indicate that ClC-5 is present in the small intestine and colon of rats and suggest that it plays a role in the endocytotic pathways of intestinal cells.  相似文献   
2.
Transient neonatal diabetes (TNDM) is manifested before the age of 6 weeks and typically resolves within 18 months. Main clinical features include intrauterine growth retardation, hyperglycemia and dehydration with absent ketoacidosis. Causes of TNDM are heterogeneous but 70% are due to a chromosomal aberration in the region 6q24 which contains the imprinted genes PLAGL1/ZAC and HYMAI. Paternal uniparental disomy 6 (upd(6)pat) or paternal duplications of the imprinted region as well as imprinting defects of the maternal allele all result in an overexpression of the paternally expressed gene PLAGL1. Imprinting defects in 6q24 can occur as isolated events or can affect more than one locus (hypomethylation syndrome). Hypomethylation at multiple loci has so far been observed in patients with TNDM, Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS).The risk of recurrence depends on the underlying cause of TNDM. Chromosomal aberrations in the parents affecting chromosome 6 increase the risk for UPD or duplication of the imprinted locus in 6q24. Nevertheless, UPD and duplication 6q24 are mostly de novo occurrences.  相似文献   
3.
4.
Uropathogenic Escherichia coli (UPEC) colonizing kidneys is the main cause of acute pyelonephritis. TLR5 that senses flagellin was shown to be highly expressed in the bladder and to participate in host defence against flagellated UPEC, although its role in kidneys still remains elusive. Here we show that TLR5 is expressed in renal medullary collecting duct (MCD) cells, which represent a preferential site of UPEC adhesion. Flagellin, like lipopolysaccharide, stimulated the production of the chemoattractant chemokines CXCL1 and CXCL2, and subsequent migration capacity of neutrophils in cultured wild‐type (WT) and Tlr4?/? MCDs, but not in Tlr5?/? MCDs. UPEC can translocate across intact MCD layers without altering tight junctions. Strikingly, the invasion capacity and transcellular translocation of the UPEC strain HT7 were significantly lower in Tlr5?/? than in WT MCDs. The non‐motile HT7ΔfliC mutant lacking flagellin also exhibited much lower translocation capacities than the HT7 isolates. Finally, Tlr5?/? kidneys exhibited less infiltrating neutrophils than WT kidneys one day after the transurethral inoculation of HT7, and greater delayed renal bacterial loads in the day 4 post‐infected Tlr5?/? kidneys. Overall, these findings indicate that the epithelial TLR5 participates to renal antibacterial defence, but paradoxically favours the translocation of UPEC across intact MCD cell layers.  相似文献   
5.
6.
Epsilon toxin is produced by Clostridium perfringens types B and D which are responsible for fatal intestinal diseases in animals. The main biological activity of epsilon toxin is the production of oedema in various organs. We have previously found that epsilon toxin forms a large membrane complex in MDCK cells which is not internalized into cell, and induces cell volume enlargement and loss of cell viability (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., Popoff, M. R. (1997) J Bacteriol 179, 6480-6487). Here, we show that epsilon toxin is very potent to decrease the trans-epithelial electrical resistance of polarized MDCK cells grown on filters without altering the organization of the junctional complexes. The dose-dependent decrease in trans-epithelial electrical resistance, more marked when the toxin was applied to the apical side than to the basal side of MDCK cells, was associated with a moderate increase of the paracellular permeability to low-molecular-weight compounds but not to macromolecules. Epsilon toxin probably acts by forming large membrane pores which permit the flux of ions and other molecules such as the entry of propidium iodide and finally to the loss of cell viability.  相似文献   
7.
The influence of microtubules and F-actin on Na+-K+-Cl? cotransport was investigated in cultured cells derived from outer-medullary thick ascending limb tubules microdissected from the mouse kidney. The cultured cells contained Tamm-Horsfall protein, produced cAMP in response to dD-arginine vasopressin (dD-AVP), isoproterenol, prostaglandin E2 and forskolin (FK), and exhibited an ouabain-resistant furosemidesensitive (Or-Fs) component of 86Rb+ influx mediated by the Na+-K+-Cl? cotransporter. Both FK and dD-AVP stimulated the Or-Fs component of Rb+ influx. Neither agent altered the tubulin and cytokeratin networks nor the shape of the tight junction using a specific anti-ZO-1 antibody. In contrast, they did induce a marked redistribution of F-actin to the periphery of the cells delineating the tight junctions. Preincubation of the cells with nocodazole, to disrupt microtubules, did not alter the FK-or dD-AVP-elicited Or-Fs Rb+ influx. In contrast, phalloidin and NBD-phallicidin, which stabilize F-actin, markedly impaired the stimulation of Na+-K+-Cl? cotransport by FK or dD-AVP, without affecting the Na+-K+ ATPase pumps and the rate constant of 36Cl? and 86Rb+ efflux. These results strongly suggested that cAMP-stimulated Na+-K+-Cl? cotransport is linked to F-actin in renal TAL cells.  相似文献   
8.
9.
The mechanisms involved in the cytotoxic action of oxysterols in the pathogenesis of atherosclerosis still remain poorly understood. Among the major oxysterols present in oxidized low-density lipoprotein, we show here that 7-ketocholesterol (7-Kchol) induces oxidative stress and/or apoptotic events in human aortic smooth muscle cells (SMCs). This specific effect of 7-Kchol is mediated by a robust upregulation (threefold from the basal level) of Nox-4, a reactive oxygen species (ROS)-generating NAD(P)H oxidase homologue. This effect was highlighted by silencing Nox-4 expression with a specific small interfering RNA, which significantly reduced the 7-Kchol-induced production of ROS and abolished apoptotic events. Furthermore, the 7-Kchol activating pathway included an early triggering of endoplasmic reticulum stress, as assessed by transient intracellular Ca(2+) oscillations, and the induction of the expression of the cell death effector CHOP and of GRP78/Bip chaperone via the activation of IRE-1, all hallmarks of the unfolded protein response (UPR). We also showed that 7-Kchol activated the IRE-1/Jun-NH(2)-terminal kinase (JNK)/AP-1 signaling pathway to promote Nox-4 expression. Silencing of IRE-1 and JNK inhibition downregulated Nox-4 expression and subsequently prevented the UPR-dependent cell death induced by 7-Kchol. These findings demonstrate that Nox-4 plays a key role in 7-Kchol-induced SMC death, which is consistent with the hypothesis that Nox-4/oxysterols are involved in the pathogenesis of atherosclerosis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号