首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2723篇
  免费   160篇
  国内免费   2篇
  2885篇
  2023年   21篇
  2022年   33篇
  2021年   68篇
  2020年   32篇
  2019年   38篇
  2018年   54篇
  2017年   46篇
  2016年   84篇
  2015年   124篇
  2014年   116篇
  2013年   147篇
  2012年   211篇
  2011年   189篇
  2010年   135篇
  2009年   110篇
  2008年   163篇
  2007年   160篇
  2006年   162篇
  2005年   123篇
  2004年   125篇
  2003年   108篇
  2002年   103篇
  2001年   44篇
  2000年   39篇
  1999年   34篇
  1998年   22篇
  1997年   12篇
  1996年   28篇
  1995年   15篇
  1994年   26篇
  1993年   17篇
  1992年   24篇
  1991年   25篇
  1990年   25篇
  1989年   19篇
  1988年   17篇
  1987年   16篇
  1986年   9篇
  1985年   12篇
  1984年   14篇
  1983年   19篇
  1982年   8篇
  1981年   9篇
  1980年   9篇
  1978年   17篇
  1976年   7篇
  1974年   7篇
  1973年   8篇
  1967年   8篇
  1966年   6篇
排序方式: 共有2885条查询结果,搜索用时 15 毫秒
1.
2.
Filamentous inclusions of alpha-synuclein protein are hallmarks of neurodegenerative diseases collectively known as synucleinopathies. Previous studies have shown that exposure to oxidative and nitrative species stabilizes alpha-synuclein filaments in vitro, and this stabilization may be due to dityrosine cross-linking. To test this hypothesis, we mutated tyrosine residues to phenylalanine and generated recombinant wild type and mutant alpha-synuclein proteins. alpha-Synuclein proteins lacking some or all tyrosine residues form fibrils to the same extent as the wild type protein. Tyrosine residues are not required for protein cross-linking or filament stabilization resulting from transition metal-mediated oxidation, because higher Mr SDS-resistant oligomers and filaments stable to chaotropic agents are detected using all Tyr --> Phe alpha-synuclein mutants. By contrast, cross-linking resulting from exposure to nitrating agents required the presence of one or more tyrosine residues. Furthermore, tyrosine cross-linking is involved in filament stabilization, because nitrating agent-exposed assembled wild type, but not mutant alpha-synuclein lacking all tyrosine residues, was stable to chaotropic treatment. In addition, the formation of stable alpha-synuclein inclusions in intact cells after exposure to oxidizing and nitrating species requires tyrosine residues. These findings demonstrate that nitrative and/or oxidative stress results in distinct mechanisms of alpha-synuclein protein modifications that can influence the formation of stable alpha-synuclein fibrils.  相似文献   
3.
4.
5.
    
  1. Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.
  2. A ten‐year‐old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils. Surface (0–10 cm) mineral soil was repeatedly measured for soil C concentration, C:N ratio, pH, moisture, and temperature in twenty‐four tree species mixtures and twelve corresponding monocultures (replicated in four blocks).
  3. Soil pH, moisture, and temperature responded to tree diversity and identity. Greater productivity in above‐ and below‐ground tree components did not increase soil C concentration. Soil pH increased and soil moisture decreased with functional diversity, more specifically, when species had different growth strategies and shade tolerances. Functional identity affected soil moisture and temperature, such that tree communities with more slow‐growing and shade‐tolerant species had greater soil moisture and temperature. Higher temperature was measured in communities with broadleaf‐deciduous species compared to communities with coniferous‐evergreen species.
  4. We conclude that long‐term soil C cycling in forest plantations will likely respond to changes in soil pH, moisture, and temperature that is mediated by tree species composition, since tree species affect these soil properties through their litter quality, water uptake, and physical control of soil microclimates.
  相似文献   
6.
7.
Chondroitin sulfate A (CSA) present in the placental intervillous blood spaces has been described as the main receptor involved in the massive sequestration of Plasmodium falciparum parasitized erythrocytes to the placenta. Placental parasite isolates are functionally distinct from isolates that sequester in other organs, because they do not cytoadhere to CD36 but instead bind to CSA. To investigate for the parasites molecules associated with the CSA adhesion phenotype, different methodologies have been developed to select for CSA-binding lines in vitro mainly using non-placental sources of CSA that differ in their sulfation pattern. In this study, we show that the human trophoblastic BeWo cell line is a very efficient alternative to select for the CSA-binding phenotype in parasitized erythrocytes.  相似文献   
8.
Understanding the processes that shape biodiversity patterns is essential for ecosystem management and conservation. Local environmental conditions are often good predictors of species distribution and variations in habitat quality usually positively correlate to species richness. However, beside habitat limitation, species presence-absence may be constrained by dispersal limitation. We tested the relative importance of both limitations on saproxylic beetle diversity, using forest continuity as a surrogate for dispersal limitation and stand maturity as a surrogate for habitat limitation. Forest continuity relies on the maintenance of a forest cover over time, while stand maturity results in the presence of old-growth habitat features. Forty montane beech-fir forests in the French pre-Alps were sampled, under a balanced sampling design in which forest continuity and stand maturity were crossed. A total of 307 saproxylic beetle species were captured using flight-interception traps and Winkler–Berlese extractors. We explored the response of low- versus high-dispersal species groups to forest continuity and stand maturity. Saproxylic beetle diversity increased significantly with stand maturity and was mostly influenced by variables related to deadwood diversity at the stand scale and suitable habitat availability at the landscape scale. Surprisingly, no evidence of dispersal limitation was found, as diversity patterns were not influenced by forest continuity and associated variables, even for low-dispersal species. Our study demonstrates that in an unfragmented forest landscape, saproxylic beetles are able to colonize recent forests, as long as local deadwood resources are sufficiently diversified (e.g. tree species, position, diameter and/or decay stage).  相似文献   
9.
The prochiral anthelmintic drug albendazole was administered orally to sheep and rats. Blood samples were taken at standardized intervals during the time course of the plasma kinetics: 18 h in rats and 48 h in sheep. The enantiomeric ratio of the sulfoxide metabolite was determined by means of HPLC on a chiral stationary phase, the chiral selector of which was a N-3,5-dinitrobenzoyl derivative of (S)-tyrosine. Two enantiomers were detected in both animal species but their ratios were inverted in rat vs. sheep. The evolution of the ratio is turned from a racemate at 15 min to 60(-):40(+) at 12 h in rats, while it moved from 23(-):77(+) at 3 h to 4(-):96(+) at 36 h after administration in sheep.  相似文献   
10.
Three species of Antarctic mites, Alaskozetes antarcticus, Hydrogamasellus antarcticus and Rhagidia gerlachei, are abundant in the vicinity of Palmer Station, Antarctica. No single mechanism for reducing water stress was shared by all three species. A. antarcticus and R. gerlachei (both ca. 200 μg) are over twice as large as H. antarcticus (ca. 90 μg), but all had similar body water content (67%) and tolerated a loss of up to 35% of their body water before succumbing to dehydration. All imbibed free water and had the capacity to reduce water loss behaviorally by forming clusters. Alaskozetes antarcticus was distinct in that it relied heavily on water conservation (xerophilic classification) that was largely achieved by its thick cuticular armor, a feature shared by all members of this suborder (Oribatida), and abundant cuticular hydrocarbons. In comparison to the other two species, A. antarcticus was coated with 2–3× the amount of cuticular hydrocarbons, had a 20-fold reduction in net transpiration rate, and had a critical transition temperature (CTT) that indicates a pronounced suppression in activation energy (E a) at temperatures below 25°C. In contrast, H. antarcticus and R. gerlachei lack a CTT, have lower amounts of cuticular hydrocarbons and have low E as and high net transpiration rates, classifying them as hydrophilic. Only H. antarcticus was capable of utilizing water vapor to replenish its water stores, but it could do so only at relative humidities close to saturation (95–98 %RH). Thus, H. antarcticus and R. gerlachei require wet habitats and low temperature to counter water loss, and replace lost water behaviorally through predation. Compared to mites from the temperate zone, all three Antarctic species had a lower water content, a feature that commonly enhances cold tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号