首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2020年   1篇
  2017年   2篇
  2012年   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Receptor tyrosine kinases have a single transmembrane (TM) segment that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, mutations within some of these receptors, and recent studies with the epidermal growth factor (EGF) and ErbB2 receptors have indicated that interactions between TM domains do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimerization and activation. One consequence of the importance of these interactions is that short hydrophobic peptides corresponding to these domains should act as specific inhibitors. To test this hypothesis, we constructed expression vectors encoding short fusion peptides encompassing native or mutated TM domains of the EGF, ErbB2, and insulin receptors. In human cell lines overexpressing the wild-type EGF receptor or ErbB2, we observed that the peptides are expressed at the cell surface and that they inhibit specifically the autophosphorylation and signaling pathway of their cognate receptor. Identical results were obtained with peptides chemically synthesized. Mechanism of action involves inhibition of dimerization of the receptors as shown by the lack of effects of mutant nondimerizing sequences, completed by density centrifugation and covalent cross-linking experiments. Our findings stress the role of TM domain interactions in ErbB receptor function, and possibly for other single-spanning membrane proteins.  相似文献   
2.
3.
Reactive oxygen species regulate protein functionality. Cell cycle CDC25 phosphatases are targets of such oxidative regulation in vitro. We sought to evaluate if a thioredoxin (trx)-dependent redox regulation of CDC25 exists in cancer cells. For that purpose, we used MCF7 and MDA-MB 231 breast cancer cells, which express trx1 differentially, together with two trx/thioredoxin reductase (trxR) inhibitors, Auranofin and Acrolein. Auranofin could induce a full trxR inhibition associated with ROS production in both cell lines. Acrolein could provoke similar effects only in MDA-MB 231 cells with a low trx1 expression. Simultaneous trx1 oxidation and trxR inactivation occurred only in the presence of Acrolein and resulted in a G2-M cell cycle arrest, without full CDC25 inhibition in MDA-MB 231 cells. Our data suggest that the maintenance of CDC25 activity does not fully rely on the trx system in breast cancer cells, even in the presence of a major oxidative stress.  相似文献   
4.
Journal of Physiology and Biochemistry - Elastin, the major protein of the extracellular matrix, is specially found in cardiovascular tissues and contributing to 30–50% of the dry weight of...  相似文献   
5.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors. Recently, zinc has been shown to activate the receptor tyrosine kinase, TrkB, independently of neurotrophins. This activation occurs via increasing the Src family kinase activity. In the present study, we investigated whether the ALK activity could be modulated by extracellular zinc. We first showed that zinc alone rapidly activates ALK. This activation is dependent of ALK tyrosine kinase activity and dimerization of the receptor but is independent of Src family kinase activity. In contrast, addition of sodium pyrithione, a zinc ionophore, led to a further activation of ALK. This stronger activation is dependent of Src family kinase but independent of ALK activity and dimerization. In conclusion, zinc could constitute an endogenous ligand of ALK in vertebrates.  相似文献   
6.
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号