首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2004年   1篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Rerkasem  Benjavan  Jamjod  Sansanee 《Plant and Soil》1997,193(1-2):169-180
Plant response to low B in the soil varies widely among species, and among genotypes within a species. Boron efficient genotypes are those that are able to grow well in soils in which other genotypes are adversely affected by B deficiency. This review considers the extent of variation in B efficiency in plant species and genotypes, the physiological nature of the efficiency mechanisms, what is known of the genetic basis for inheritance, screening techniques and the practical implications of the genotypic variations.Frequently, B efficiency is the sole reason for a difference between an average yield and complete crop failure. Severe yield losses can be effectively prevented by the inclusion of B efficiency as a selection criterion in crop breeding and improvement programmes for regions with low B soils. In addition, the expression of B deficiency primarily through male sterility, which is common in many species, creates opportunities for outcrossing in normally self-fertilised species. This, in turn, leads to two possibilities. Firstly, self fertilisation, and therefore maintenance of pure lines, cannot always be assumed in self pollinated species where B efficient and inefficient genotypes are grown side by side on low B soils. Secondly, B deficiency, in soil or artificial media, may be used as a fertility selective medium in which the male sterile B inefficient genotypes and the male fertile B efficient genotypes could hybridise naturally. This would be useful as a simple and economical method for creating heterozygous populations in breeding programmes as well as for producing hybrid seeds. Now that the roles of B in plant growth and development are beginning to be clarified, the efficiency mechanisms as well as the governing genetics can be explained. Practical benefits from the genetic diversity of B efficiency will be enhanced by a better understanding of B efficiency mechanisms and the molecular bases for their genetic control.  相似文献   
2.
Boron (B) deficiency depresses wheat, barley and triticale yield through male sterility. On the basis of field responses to B fertilization, maize (Zea mays L.) is affected by B deficiency in five continents. In a series of sand culture trials with maize subject to B0 (nil added B) and B20 (20???M added B) treatments, we described how B deficiency depressed maize grain yield while showing an imperceptible effect on vegetative dry weight. With manual application of pollen to the silk of each plant, B0 plants produced 0.4 grain ear?1 compared with 410 grains ear?1 in B20 plants. Symptoms of B deficiency was observed only in B0 plants, which exhibited symptoms of narrow white to transparent lengthwise streaks on leaves, multiple but small and abnormal ears with very short silk, small tassels with some branches emerging dead, and small, shrivelled anthers devoid of pollen. Tassels, silk and pollen of B0 plants contained only 3?C4?mg B kg?1 DW compared with twice or more B in these reproductive tissues in B20 plants. A cross-fertilization experiment showed that, although the tassels and pollen were more affected, the silk was more sensitive to B deficiency. Pollen from B20 plants applied to B0 silk produced almost no grains, while pollen from B0 on B20 silk increased the number of grains to 37% of the 452 grains plant?1 produced from B20 pollen on B20 silk. Therefore, the silk of the first ear may be targeted for precise diagnosis of B status at maize reproduction, for timely correction by foliar B application, and even for B-efficient genotype selection.  相似文献   
3.
Genotypic variation in boron (B) efficiency in wheat (Triticum aestivum L.) is expressed as large differences in grain set and pollen fertility under low soil B, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B transport and retranslocation can explain cultivar differences in B efficiency between B-efficient (Fang 60) and B-inefficient (SW41) wheat cultivars. Plants were grown with adequate 11B (10 μM), until the premeiotic interphase stage in anther development, then transferred into 10B at 0.1 or 10 μM. After five days, ending at the young microspore stage, plants were returned to adequate 11B. Plants were harvested at 0, 1 and 5 days after transferring into 10B, and at anthesis when fresh pollen was examined for viability. After 5 days in 0.1 μM B, pollen viability in SW41 was depressed by 47%, but pollen of Fang 60 was not affected. When B supply was low, the proportion of plant B partitioned into the ear of Fang 60 was almost twice as high as that in SW 41, enabling Fang 60 to maintain B concentration in the ear at 6.8 mg kg?1 dry weight (DW), whereas it dropped to 3.8 mg kg?1 DW in SW 41. Boron accumulation in the ear, when external supply was restricted, did not come from the 11B previously taken up by the plant. The greater 10B accumulation in ears of Fang 60 compared to SW 41, with limited external B supply, indicated that B efficiency was associated with xylem transport of B. The greater increase of 10B:11B ratio in the ear of Fang 60 compared to SW 41, over the 5 days of B interruption further indicated that greater B efficiency was associated with a stronger capability for long distance transport of B from the rooting medium into the ear via the xylem rather with than retranslocation of B from vegetative parts.  相似文献   
4.
Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction–denaturing gradient gel electrophoresis. The bacterial communities’ richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.  相似文献   
5.
In most plant families, boron (B) is phloem immobile. For plants such as peanut which bury their fruit, the mechanism for B delivery and the B source for fruit and seed growth remains enigmatic. Therefore, this study aimed to establish evidence of B retranslocation in peanut and to identify its importance in plant development. In a sand culture experiment, the increase in B contents in new organs after B withdrawal and the corresponding decline in B contents in older organs was evidence of B redistribution. In a foliar 10B experiment, the 10B abundance of treated-leaves decreased and 10B was detected in leaves and flowers formed after the application of foliar B. Application of 10B to the roots for a period also provided evidence for the retranslocation of 10B accumulated during the first growth period. The 10B abundance in older plant parts declined and 10B appeared in new organs (flowers, pegs, leaves) that had developed after the 10B supply had been replaced by 11B. In the fourth experiment, foliar application of B reduced hollow heart, a symptom of B deficiency in seeds, in cv. TAG 24 from 39 to 8% and in Tainan 9 from 63 to 18%. These experiments all provide evidence for B retranslocation in peanut, but further work on the relative importance of the xylem and phloem pathways for B loading into the fruit is needed.  相似文献   
6.

Purple or black rice (Oryza sativa L.) is a culturally important germplasm in Asia with a long history of cultivation in northern Thailand. Purple rice is identified by the color of the rice pericarp, which varies from purple to black with the accumulation of phenolic acids, flavonoids, and anthocyanins. In the present study, we assessed molecular variation within and between wetland purple rice landraces germplasm from northern and northeastern Thailand using 12 microsatellite loci. All purple rice varieties surveyed showed high levels of homozygosity within varieties and strong genetic differentiation among varieties, indicating the fixation of genetic differences among them. This pattern is consistent with purple rice farming practices in northern Thailand, where a small portion of harvested seed is selected and replanted based on farmers’ preferences. The reduced genetic diversity and high homozygosity observed for purple rice is also consistent with patterns expected for this inbreeding crop. Genetic differentiation among the varieties showed some degree of structuring based on their geographical origin. Taken together, these data highlight that the genetic diversity and structure of wetland purple rice landraces is shaped by farmer utilization and cultivation through local cultural practices, and that conservation should focus on ex situ conservation across its cultivation range, along with on-farm, in situ conservation based on farmers’ seed-saving practices. In situ conservation may prove especially valuable for preserving the genetic identity of local varieties and promote adaptation to local environments.

  相似文献   
7.
Plant and Soil - The loss of iron and zinc during milling to produce white rice can have serious consequences for human health. Therefore, the objective was to evaluate Fe and Zn partitioning...  相似文献   
8.
Productivity limiting impacts of boron deficiency,a review   总被引:1,自引:0,他引:1  
Plant and Soil - In the almost century since the establishment of boron (B) as an essential plant nutrient, its roles in plant growth and development have been identified, and the mechanism for B...  相似文献   
9.
Utilising the 15N dilution technique the relationship between the proportion of N derived from N2 fixation and relative abundance of ureides in xylem sap was evaluated for Phaseolus vulgaris L. cv. Mokcham during vegetative and reproductive development. In order to establish calibration curves for time integrated estimates of N2 fixation, plants were raised in sand culture during the dry season in northern Thailand and continuously supplied with a N-free nutrient solution or the same solution amended with 0, 3, 6 or 9 mol m–3 nitrate. Large changes in plant dependence on N2 fixation were concomitantly reflected by corresponding alterations in N solutes in xylem sap. Regression analyses of the data suggested high correlations between relative ureide content and N2 fixation, but different slopes and line intercepts indicated the requirement for the use of calibration curves established for different phases of the development of the plant. Largest age related differences were noted between vegetative and reproductive development. Judging from 95% confidence limits, utilisation of appropriate calibrations can reduce errors of the technique to close to ±5%.A second experiment, involving similarly cultivated plants exposed to different sources of mineral N, indicated an effect of ammonium on xylem sap composition. This implies that calibrations, in which N2 fixation is regulated only by applications of various concentrations of nitrate, may lead to errors in situations where a major proportion of the plant available soil nitrogen fraction is present in the form of ammonium.  相似文献   
10.
Phenotypic and Genetic Diversity of Local Perilla ( Perilla frutescens (L.) Britt.) from Northern Thailand. Perilla frutescens (L.) Britt., an important oil and culinary crop in Asia, is a valuable genetic resource. Despite its nutritional value and historic and cultural importance, research on Perilla has been scarce, particularly as far as its genetic diversity is concerned. The aims of the present study were to assess variability within and between 29 seed samples of P. frutescens collected from farmers in northern Thailand, and evaluation conducted of their genetic, morphological, and agronomic characteristics, and the seed composition, including polyunsaturated fatty acids omega-3, omega-6, and omega-9, and the vitamin E γ-tocopherols. Perilla frutescens (L.) Britt. of northern Thailand is genetically variable, and structured according to origin of collection which was the consequence of local adaptation. The discovery of high levels of polyunsaturated fatty acids, namely α-linolenic acid and γ-tocopherols, in some Perilla samples indicates the potential for utilizing Perilla for its high omega-3 content including as a vitamin E supplement for humans, a prospect that should be taken into account when planning conservation strategies or when Perilla variability is used in breeding programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号