首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24167篇
  免费   2307篇
  国内免费   124篇
  2023年   137篇
  2022年   306篇
  2021年   657篇
  2020年   372篇
  2019年   496篇
  2018年   580篇
  2017年   444篇
  2016年   801篇
  2015年   1386篇
  2014年   1494篇
  2013年   1583篇
  2012年   2078篇
  2011年   1951篇
  2010年   1127篇
  2009年   924篇
  2008年   1327篇
  2007年   1291篇
  2006年   1110篇
  2005年   1042篇
  2004年   1021篇
  2003年   845篇
  2002年   814篇
  2001年   483篇
  2000年   432篇
  1999年   388篇
  1998年   228篇
  1997年   165篇
  1996年   143篇
  1995年   131篇
  1994年   115篇
  1993年   117篇
  1992年   213篇
  1991年   197篇
  1990年   151篇
  1989年   151篇
  1988年   135篇
  1987年   111篇
  1986年   100篇
  1985年   118篇
  1984年   131篇
  1983年   94篇
  1982年   84篇
  1981年   74篇
  1980年   74篇
  1979年   81篇
  1978年   90篇
  1977年   79篇
  1976年   77篇
  1975年   65篇
  1974年   73篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.  相似文献   
3.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   
4.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
5.
The genome of Mus domesticus has multiple genes of the alpha 1-acid glycoprotein (AGP). Two cDNA clones were identified corresponding to AGP-1 and AGP-2. Moreover, two alleles of AGP-1 exist in inbred mice. The genomic DNA of the AGP-2 gene has been cloned and studied. Here we report the genomic organization of three M. domesticus AGP genes, the sequence analysis of the AGP-3 genomic DNA, and the expression of the AGP-3 gene. The major structural differences between AGP-2 and AGP-3 genes are located in introns 1 and 5. The low level of AGP-3 mRNA can be detected by the polymerase chain reaction (PCR). The molecular basis of the low level expression of AGP-3 and the possible classification of AGP-3 as a pseudogene are discussed.  相似文献   
6.
J Molnar  M Z Lai  G E Siefring  L Lorand 《Biochemistry》1983,22(25):5704-5709
Plasma fibronectin is one of the largest plasma proteins (Mr approximately 440 000), comprising two approximately equal polypeptide chains which are held together by a disulfide linkage near the C-terminal end of the molecule. The binding of gelatinized latex beads to liver slices as well as the internalization of these particles by macrophages, in the presence of heparin, is greatly enhanced by fibronectin. The question as to whether the entire covalent structure of fibronectin was necessary for opsonizing activity was approached by limited proteolytic degradations of the molecule. Patterns of controlled digestion with trypsin, cathepsin D, Staphylococcus aureus protease, and plasmin all indicate that the minimal unit necessary for retention of opsonic activity is some large (Mr 200 000 and 190 000) single-chain entity. Treatment with plasmin proved to be the most reliable procedure for generating the active split product which could be readily separated from the inactive, disulfide-containing C-terminal fragment. Incorporation of dansylcadaverine into plasma fibronectin (3.5 mol/mol of protein) by fibronoligase (coagulation factor XIIIa) did not affect the opsonic activity of the protein.  相似文献   
7.

Background  

Introductions of non-native tiger salamanders into the range of California tiger salamanders have provided a rare opportunity to study the early stages of secondary contact and hybridization. We produced first- and second-generation hybrid salamanders in the lab and measured viability among these early-generation hybrid crosses to determine the strength of the initial barrier to gene exchange. We also created contemporary-generation hybrids in the lab and evaluated the extent to which selection has affected fitness over approximately 20 generations of admixture. Additionally, we examined the inheritance of quantitative phenotypic variation to better understand how evolution has progressed since secondary contact.  相似文献   
8.
Okadaic acid (OA), a protein phosphatase inhibitor, was found to induce hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells. The process was dose dependent. Vimentin phosphorylation was initially enhanced by 400 nM OA in 30 min and reached maximal level (about 26-fold) when cells were treated with 400 nM OA for 90 min. Upon removal of OA, dephosphorylation of the hyperphosphorylated vimentin was observed and the levels of phosphorylation returned to that of the controls after the cells recovered under normal growing conditions for 11 h. The phosphorylation and dephosphorylation of vimentin induced by OA concomitantly resulted in reversible reorganization of vimentin filaments and alteration of cell morphology. Cells rounded up as they were entering mitosis in the presence of OA and returned to normal appearance after 11 h of recovery. Immuno-staining with anti-vimentin antibody revealed that vimentin filaments were disassembled and clustered around the nucleus when the cells were treated with OA but subsequently returned to the filamentous states when OA was removed. Two-dimensional electrophoresis analysis further revealed that hyperphosphorylation of vimentin generated at least seven isoforms having different isoelectric points. Furthermore, the enhanced vimentin phosphorylation was accompanied by changes in the detergent-solubility of the protein. In untreated cells, the detergent-soluble and -insoluble vimentins were of equal amounts but the solubility could be increased when vimentins were hyperphosphorylated in the presence of OA. Taken together, the results indicated that OA could be involved in reversible hyperphosphorylation and reorganization of vimentin intermediate filaments, which may play an important role in the structure-function regulation of cytoskeleton in the cell.  相似文献   
9.
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号