首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  33篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1998年   5篇
  1997年   1篇
  1985年   1篇
  1960年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
2.
3.
One-hundred three individuals from two Mongolian, two Siberian, and ten native American populations were studied in relation to a 340-bp sequence from an Alu insertion located in the 3' untranslated region of the LDLR gene. Seven haplotypes have been determined, and haplotype B1 was the most common, accounting for about half the sequences found. In general, diversity values are quite high, about 2.5 times higher than those found in other autosomal Alu sequences. Almost all (93%) of the variability occurs at the intrapopulation level, but the greatest among-group differentiation (6-8%) was found when we grouped in a single population all Native Americans plus Siberian Eskimos and Chukchi and compared them with Mongolians. This result is compatible with earlier mtDNA and Y-chromosome suggestions of a single origin for the first colonizers of the American continent. With this nuclear locus it was not possible to broadly distinguish between Central and South American natives. No evidence of selection or marked demographic changes was obtained with these data.  相似文献   
4.
5.
6.
Histones are post-translationally modified by multiple histonemodifying enzymes, which in turn influences gene expression. Much of the work in the field to date has focused on genetic, biochemical and structural characterization of these enzymes. The most recent genome-wide methods provide insights into specific recruitment of histone-modifying enzymes in vivo and, therefore, onto mechanisms of establishing a differential expression pattern. Here we focus on the recruitment mechanisms of the enzymes involved in the placement of two contrasting histone marks, histone H3 lysine 4 (H3K4) methylation and histone H3 lysine 27 (H3K27) methylation. We describe distribution of their binding sites and show that recruitment of different histone-modifying proteins can be coordinated, opposed or alternating. Specifically, genomic sites of the H3K4 histone demethylase KDM5A become accessible to its homolog KDM5B in cells with a lowered KDM5A level. The currently available data on recruitment of H3K4/H3K27 modifying enzymes suggests that the formed protein complexes are targeted in a sequential and temporal manner, but that additional, still unknown, interactions contribute to targeting specificity.Key words: histone-modifying enzymes, histone methylation, ChIPseq  相似文献   
7.
Global changes in the epigenome are increasingly being appreciated as key events in cancer progression. The pathogenic role of enhancer of zeste homolog 2 (EZH2) has been connected to its histone 3 lysine 27 (H3K27) methyltransferase activity and gene repression; however, little is known about relationship of changes in expression of EZH2 target genes to cancer characteristics and patient prognosis. Here we show that through expression analysis of genomic regions with H3K27 trimethylation (H3K27me3) and EZH2 binding, breast cancer patients can be stratified into good and poor prognostic groups independent of known cancer gene signatures. The EZH2-bound regions were downregulated in tumors characterized by aggressive behavior, high expression of cell cycle genes, and low expression of developmental and cell adhesion genes. Depletion of EZH2 in breast cancer cells significantly increased expression of the top altered genes, decreased proliferation, and improved cell adhesion, indicating a critical role played by EZH2 in determining the cancer phenotype.  相似文献   
8.
Histone H3K4 demethylases are essential in development and differentiation.   总被引:1,自引:0,他引:1  
Lysine histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. The methylation of Lys4 of histone H3 seems to be of particular significance. It is associated with active regions of the genome, and in Drosophila it is catalyzed by trithorax-group proteins that have become paradigms of developmental regulators at the level of chromatin. Like other histone methylation events, H3K4 methylation was considered irreversible until the identification of a large number of histone demethylases indicated that demethylation events play an important role in histone modification dynamics. However, the described demethylases had no strictly assigned biological functions and the identity of the histone demethylases that would contribute to the epigenetic changes specifying certain biological processes was unknown. Recently, several groups presented evidence that a family of 4 JmjC domain proteins results in the global changes of histone demethylation, and in elegant studies using model organisms, they demonstrated the importance of this family of histone demethylases in cell fate determination. All 4 proteins possess the demethylase activity specific to H3K4 and belong to the poorly described JARID1 protein family.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号