首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
  2021年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   6篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1988年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
2.

Background  

Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development.  相似文献   
3.

Background  

In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown.  相似文献   
4.

Background  

To help conservation programs of the endangered spur-thighed tortoise and to gain better insight into its systematics, genetic variation and evolution in the tortoise species Testudo graeca (Testudines: Testudinidae) was investigated by sequence analysis of a 394-nucleotide fragment of the mitochondrial 12S rRNA gene for 158 tortoise specimens belonging to the subspecies Testudo graeca graeca, Testudo graeca ibera, Testudo graeca terrestris, and a newly recognized subspecies Testudo graeca whitei. A 411-nucleotide fragment of the mitochondrial D-loop was additionally sequenced for a subset of 22 T. graeca, chosen because of their 12S gene haplotype and/or geographical origin.  相似文献   
5.
6.
7.
8.

Background

Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity.

Results

In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred.

Conclusions

We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-349) contains supplementary material, which is available to authorized users.  相似文献   
9.
Plant protection spray treatments may expose non-target organisms to pesticides. In the pesticide registration procedure, the honey bee represents one of the non-target model species for which the risk posed by pesticides must be assessed on the basis of the hazard quotient (HQ). The HQ is defined as the ratio between environmental exposure and toxicity. For the honey bee, the HQ calculation is not consistent because it corresponds to the ratio between the pesticide field rate (in mass of pesticide/ha) and LD50 (in mass of pesticide/bee). Thus, in contrast to all other species, the HQ can only be interpreted empirically because it corresponds to a number of bees/ha. This type of HQ calculation is due to the difficulty in transforming pesticide field rates into doses to which bees are exposed. In this study, we used a pragmatic approach to determine the apparent exposure surface area of honey bees submitted to pesticide treatments by spraying with a Potter-type tower. The doses received by the bees were quantified by very efficient chemical analyses, which enabled us to determine an apparent surface area of 1.05 cm2/bee. The apparent surface area was used to calculate the exposure levels of bees submitted to pesticide sprays and then to revisit the HQ ratios with a calculation mode similar to that used for all other living species. X-tomography was used to assess the physical surface area of a bee, which was 3.27 cm2/bee, and showed that the apparent exposure surface was not overestimated. The control experiments showed that the toxicity induced by doses calculated with the exposure surface area was similar to that induced by treatments according to the European testing procedure. This new approach to measure risk is more accurate and could become a tool to aid the decision-making process in the risk assessment of pesticides.  相似文献   
10.
The aim of this work is to propose methods to test mechanism of synergy of toxic agents in bees. A synergy between prochloraz, an imidazole fungicide, and deltamethrin, a pyrethroid insecticide, was demonstrated experimentally. The hypothesis is that prochloraz modifies the penetration or the metabolism of deltamethrin. This hypothesis is tested using a pharmacokinetic box model. A previous experimental work showed that bee instantaneous mortalities were higher, from the time t 1 to the time t 2 after spraying, in groups sprayed with deltamethrin at dose D 0 in the presence of prochloraz (+P) than in those sprayed with deltamethrin alone at a dose time as high (). We postulate that accrued mortality is proportional to the cumulated internal deltamethrin (ID 2). ID 2 of treatment (+P) had to be greater than ID 2 of treatment () during the period from t 1 to t 2 so that the hypothesis would be consistent with the experimental data. The limit, for which the hypothesis is conceivable, is the ID 2() = ID 2(+P ) curve. We study, in particular, the asymptotic behaviour of the limit curve when different parameters of the kinetic model tend to 0 or . These limits allow to verify quickly and easily whether a mechanism is conceivable or not As the limits are calculated with algebraic values, the test can be used for other synergies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号