首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Regional association analysis is one of the most powerful tools for gene mapping because instead analysis of individual variants it simultaneously considers all variants in the region. Recent development of the models for regional association analysis involves functional data analysis approach. In the framework of this approach, genotypes of variants within region as well as their effects are described by continuous functions. Such approach allows us to use information about both linkage and linkage disequilibrium and reduce the influence of noise and/or observation errors. Here we define a functional linear mixed model to test association on independent and structured samples. We demonstrate how to test fixed and random effects of a set of genetic variants in the region on quantitative trait. Estimation of statistical properties of new methods shows that type I errors are in accordance with declared values and power is high especially for models with fixed effects of genotypes. We suppose that new functional regression linear models facilitate identification of rare genetic variants controlling complex human and animal traits. New methods are implemented in computer software FREGAT which is available for free download at http://mga.bionet.nsc.ru/soft/FREGAT/.  相似文献   
2.
A model for metabolism of the last bacterial common ancestor based on biomimetic analysis of the metabolic systems of phylogenetically ancient bacteria is developed. The mechanism of natural selection and evolution of the autocatalytic chemical systems under the effect of natural homeostatic parameters, such as chemical potentials, temperature, and pressure of environment is proposed. Competition between particular parts of the autocatalytic network with positive-plus-negative feedback resulted in the formation of particular systems of primary autotrophic, mixotrophic, and heterotrophic metabolism. The model of the last common ancestor as a combination of coupled metabolic cycles among population of protocells is discussed. Physicochemical features of these metabolic cycles determined the major principles of natural selection towards ancestral bacterial taxa.  相似文献   
3.

Background

Avoidance of allergens is still recommended as the first and best way to prevent allergic illnesses and their comorbid diseases. Despite a variety of attempts there has been very limited success in the area of environmental control of allergic disease. Our objective was to identify a non-invasive, non-pharmacological method to reduce indoor allergen loads in atopic persons' homes and public environments. We employed a novel in vivo approach to examine the possibility of using aluminum sulfate to control environmental allergens.

Methods

Fifty skin test reactive patients were simultaneously skin tested with conventional test materials and the actions of the protein/glycoprotein modifier, aluminum sulfate. Common allergens, dog, cat, dust mite, Alternaria, and cockroach were used in the study.

Results

Skin test reactivity was significantly reduced by the modifier aluminum sulfate. Our studies demonstrate that the effects of histamine were not affected by the presence of aluminum sulfate. In fact, skin test reactivity was reduced independent of whether aluminum sulfate was present in the allergen test material or removed prior to testing, indicating that the allergens had in some way been inactivated.

Conclusion

Aluminum sulfate was found to reduce the in vivo allergic reaction cascade induced by skin testing with common allergens. The exact mechanism is not clear but appears to involve the alteration of IgE-binding epitopes on the allergen. Our results indicate that it may be possible to diminish the allergenicity of an environment by application of the active agent aluminum sulfate, thus producing environmental control without complete removal of the allergen.  相似文献   
4.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
5.
6.
The parageneses physico-chemical analysis based on a method of thermodynamic potentials has been used to study the system of C-H-O organic compounds, which are, in particular, components of biomimetically built primordial cycles of carbon dioxide chemoautotrophic fixation. Thermodynamic data for aqueous organic compounds allowed one to construct the chemical potential diagrams and establish the areas of thermodynamic stability (facies) of components of CO2 fixation pathways in hydrothermal systems, in particular, a reductive citric cycle (RCC), 3-hydroxypropionate cycle (3-HPC) and acetyl-CoA pathway. An alternative deep source of carbon (hydrocarbons) proved by the data on endogenous emission of hydrocarbons in hydrothermal fields of oceanic ridges was suggested. The system was determined, which combines hydrocarbons, CO2 and components of RCC, 3-HPC and acetyl-CoA pathway with characteristic parageneses of methane and ethylene with acetate in two-component CH4-CO2 and C2H4-O2 subsystems, respectively. The thermodynamic analysis of a redox mode at various pressures and temperatures allowed one to uniquely determine hydrocarbon-organic system able to independently generate acetate and succinate at oxidation of deep hydrothermal hydrocarbon fluids emerging on sea surface. The limits for thermodynamic stability of CO2 archaic fixation (CAF) components responsible for generation and self-organization in hydrothermal environment was identified. The tentative integrated system of CAF was developed as a combined acetyl-CoA pathway, 3-HPC and RCC containing a succinate-fumarate core, capable of switching electron flow in forward or reverse direction depending on redox potential of geochemical environment that is governed by the (CH)2(COOH)2+H2(CH2)2(COOH)2 reaction. This core is a “redox switch”, which is sensitive to certain conditions of hydrothermal environment and defines electron flow direction. The redox geochemical mode caused by temperature, pressure, composition of a hydrothermal fluid and a mineralogical setting defines stability of CAF cycle components in paragenesis with hydrocarbons and possibility of cycle self-organization.  相似文献   
7.
8.
Regional association analysis is a new statistical method which simultaneously considers all variants in a selected genome region. This method was created for the analysis of rare genetic variants, whose genotypes are determined by exome or genome sequencing. The gene is usually considered as a region. It was also proposed to use a regional analysis for testing of the association between a complex trait and a set of common variants genotyped by the panels developed for genome-wide association analysis. In this case, overlapping genome regions (sliding windows) are usually considered as a region. Since the size of such regions can be rather large, there is a risk of overestimation (inflation) of the test statistic and an increase in the type I error. In this work, the effect of the size of the region on the type I error was studied for traits with different heritability. The results of simulating experiments demonstrated that the physical size of the region but not the number of genetic variants in it is a limiting factor. The higher the trait heritability, the greater the type I error differs from the declared value. The analysis of a large number of real traits confirmed these conclusions. It is necessary to take into account these results during the interpretation of the results of regional association analysis conducted on large regions using common genetic variants.  相似文献   
9.
In this study, the morphogenic ability of cotyledon explants of fibre flax (Linum usitatissimum L.) was investigated in relation to their physiological age and genotype and the effect of growth regulators in the medium. Among four investigated genotypes, the explants of cvs. A-29 and Alexim manifested the highest and the lowest morphogenic ability, respectively. The optimum ratio of growth regulators for shoot regeneration was shown to depend on the age of donor plantlets from which the explants were obtained. For explants excised from younger plantlets, the lower concentration of benzyladenine (BA) and the absence of auxin were preferable. For explants from older plantlets, the higher BA concentration and NAA presence in the medium were required for shoot regeneration. The addition of ABA to the regeneration medium usually reduced shoot regeneration frequency; however, the inhibitory effect of ABA depended on other growth regulators.  相似文献   
10.
There are gaps in existing understanding of fungal pellet growth dynamics. We used scanning electron microscopy (SEM) for morphological characterization of the biomass organization of Termitomyces pellets for seven species: T. microcarpus (TMI1), T. albuminosus (TAL1, TAL2), T. striatus (TSTR), T. aurantiacus (TAUR), T. heimii (THE1, THE2), T. globulus (TGLO) and T. clypeatus (TCL1, TCL2, TCL3, TCL4, TCL5). We assessed the utility of SEM for morphological and structural characterization of Termitomyces spp. in three dimensional (3D) pellet form to identify ideal pellet morphology for industrial use. Typological classification of Termitomyces species was based on furrows, isotropy, total motifs and fractal dimensions. The pellets formed were entangled and exhibited highly compacted mycelial mass with microheterogeneity and microporosity. The mean density of furrows of Termitomyces species was between 10,000 and 11,300 cm/cm2, percentage isotropy was 30?80 and total motifs varied from 300 to 2500. TGLO exhibited the highest furrow mean density, 11243 cm/cm2, which indicated a compact, cerebroid structure with complex ridges and furrows, whereas TAL2 exhibited the lowest furrow density. TMI1a exhibited a high percentage isotropic value, 74.6, TSTR exhibited the lowest, 30.9. Total motif number also was used as a typological classification parameter. Fractal values were 2.64?2.78 for various submerged conditions of Termitomyces species. TAL1 exhibited the highest fractal dimension and TAL2 the lowest, which indicates the complexity of branching patterns. Three-dimensional SEM image analysis can provide insight into pellet micromorphology and is a powerful tool for exploring topographical details of pellets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号